Cargando…
Fluorescent artificial receptor-based membrane assay (FARMA) for spatiotemporally resolved monitoring of biomembrane permeability
The spatiotemporally resolved monitoring of membrane translocation, e.g., of drugs or toxins, has been a long-standing goal. Herein, we introduce the fluorescent artificial receptor-based membrane assay (FARMA), a facile, label-free method. With FARMA, the permeation of more than hundred organic com...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363885/ https://www.ncbi.nlm.nih.gov/pubmed/32669621 http://dx.doi.org/10.1038/s42003-020-1108-9 |
Sumario: | The spatiotemporally resolved monitoring of membrane translocation, e.g., of drugs or toxins, has been a long-standing goal. Herein, we introduce the fluorescent artificial receptor-based membrane assay (FARMA), a facile, label-free method. With FARMA, the permeation of more than hundred organic compounds (drugs, toxins, pesticides, neurotransmitters, peptides, etc.) through vesicular phospholipid bilayer membranes has been monitored in real time (µs-h time scale) and with high sensitivity (nM-µM concentration), affording permeability coefficients across an exceptionally large range from 10(–9)–10(–3) cm s(–1). From a fundamental point of view, FARMA constitutes a powerful tool to assess structure-permeability relationships and to test biophysical models for membrane passage. From an applied perspective, FARMA can be extended to high-throughput screening by adaption of the microplate reader format, to spatial monitoring of membrane permeation by microscopy imaging, and to the compartmentalized monitoring of enzymatic activity. |
---|