Cargando…
Jamming, fragility and pinning phenomena in superconducting vortex systems
We examine driven superconducting vortices interacting with quenched disorder under a sequence of perpendicular drive pulses. As a function of disorder strength, we find four types of behavior distinguished by the presence or absence of memory effects. The fragile and jammed states exhibit memory, w...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363902/ https://www.ncbi.nlm.nih.gov/pubmed/32669592 http://dx.doi.org/10.1038/s41598-020-68417-0 |
Sumario: | We examine driven superconducting vortices interacting with quenched disorder under a sequence of perpendicular drive pulses. As a function of disorder strength, we find four types of behavior distinguished by the presence or absence of memory effects. The fragile and jammed states exhibit memory, while the elastic and pinning dominated regimes do not. In the fragile regime, the system organizes into a pinned state during the first pulse, flows during the second perpendicular pulse, and then returns to a pinned state during the third pulse which is parallel to the first pulse. This behavior is the hallmark of the fragility proposed for jamming in particulate matter. For stronger disorder, we observe a robust jamming state with memory where the system reaches a pinned or reduced flow state during the perpendicular drive pulse, similar to the shear jamming of granular systems. We show signatures of the different states in the spatial vortex configurations, and find that memory effects arise from coexisting elastic and pinned components of the vortex assembly. The sequential perpendicular driving protocol we propose for distinguishing fragile, jammed, and pinned phases should be general to the broader class of driven interacting particles in the presence of quenched disorder. |
---|