Cargando…

Unstructured kinetic models to simulate an arabinose switch that decouples cell growth from metabolite production

Modeling synthetic gene circuits to implement dynamic flux balancing is crucial in teaching and exploring metabolic engineering strategies to repartition metabolic precursors and construct efficient microbial cell factories. Microbial fitness and production rates are often complex phenotypes that ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Edwards, Harley, Xu, Peng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7364165/
https://www.ncbi.nlm.nih.gov/pubmed/32695893
http://dx.doi.org/10.1016/j.synbio.2020.07.003
_version_ 1783559786942431232
author Edwards, Harley
Xu, Peng
author_facet Edwards, Harley
Xu, Peng
author_sort Edwards, Harley
collection PubMed
description Modeling synthetic gene circuits to implement dynamic flux balancing is crucial in teaching and exploring metabolic engineering strategies to repartition metabolic precursors and construct efficient microbial cell factories. Microbial fitness and production rates are often complex phenotypes that are governed by highly non-linear, multivariable functions which are intrinsically linked through carbon metabolism. The solution of such dynamic system can be difficult for synthetic biologists to visualize or conceptualize. Recently, researchers (Santala et al., Metab. Eng. Comm., 2018) have implemented an arabinose based genetic switch to dynamically partition the central carbon flux between cell growth and product formation. The autonomous switch allowed dynamic shift from arabinose-associated cell growth to acetate-associated product (wax ester) formation. This system clearly demonstrates the effectiveness of using a genetic switch to decouple cell growth from product formation in a one-pot bioreactor to minimize operational cost. Coupled with Michaelis-Menten kinetics, and Luedeking-Piret equations, we were able to reconstruct and analyze this metabolic switch in silica and achieved graphical solutions that qualitatively match with the experimental data. By assessing physiologically-accessible parameter space, we observed a wide range of dynamic behavior and examined the different limiting cases. Graphical solutions for this dynamic system can be viewed simultaneously and resolved in real time via buttons on the graphical user interface (GUI). Metabolic bottlenecks in the system can be accurately predicted by varying the respective rate constants. The GUI serves as a diagnosis toolkit to troubleshoot genetic circuits design constraints and as an interactive workflow of using this arabinose based genetic switch to dynamically control carbon flux, which may provide a valuable computational toolbox for metabolic engineers and synthetic biologists to simulate and understand complex genetic-metabolic system.
format Online
Article
Text
id pubmed-7364165
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher KeAi Publishing
record_format MEDLINE/PubMed
spelling pubmed-73641652020-07-20 Unstructured kinetic models to simulate an arabinose switch that decouples cell growth from metabolite production Edwards, Harley Xu, Peng Synth Syst Biotechnol Article Modeling synthetic gene circuits to implement dynamic flux balancing is crucial in teaching and exploring metabolic engineering strategies to repartition metabolic precursors and construct efficient microbial cell factories. Microbial fitness and production rates are often complex phenotypes that are governed by highly non-linear, multivariable functions which are intrinsically linked through carbon metabolism. The solution of such dynamic system can be difficult for synthetic biologists to visualize or conceptualize. Recently, researchers (Santala et al., Metab. Eng. Comm., 2018) have implemented an arabinose based genetic switch to dynamically partition the central carbon flux between cell growth and product formation. The autonomous switch allowed dynamic shift from arabinose-associated cell growth to acetate-associated product (wax ester) formation. This system clearly demonstrates the effectiveness of using a genetic switch to decouple cell growth from product formation in a one-pot bioreactor to minimize operational cost. Coupled with Michaelis-Menten kinetics, and Luedeking-Piret equations, we were able to reconstruct and analyze this metabolic switch in silica and achieved graphical solutions that qualitatively match with the experimental data. By assessing physiologically-accessible parameter space, we observed a wide range of dynamic behavior and examined the different limiting cases. Graphical solutions for this dynamic system can be viewed simultaneously and resolved in real time via buttons on the graphical user interface (GUI). Metabolic bottlenecks in the system can be accurately predicted by varying the respective rate constants. The GUI serves as a diagnosis toolkit to troubleshoot genetic circuits design constraints and as an interactive workflow of using this arabinose based genetic switch to dynamically control carbon flux, which may provide a valuable computational toolbox for metabolic engineers and synthetic biologists to simulate and understand complex genetic-metabolic system. KeAi Publishing 2020-07-14 /pmc/articles/PMC7364165/ /pubmed/32695893 http://dx.doi.org/10.1016/j.synbio.2020.07.003 Text en © 2020 KeAi Communications Co.(+) Ltd http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Edwards, Harley
Xu, Peng
Unstructured kinetic models to simulate an arabinose switch that decouples cell growth from metabolite production
title Unstructured kinetic models to simulate an arabinose switch that decouples cell growth from metabolite production
title_full Unstructured kinetic models to simulate an arabinose switch that decouples cell growth from metabolite production
title_fullStr Unstructured kinetic models to simulate an arabinose switch that decouples cell growth from metabolite production
title_full_unstemmed Unstructured kinetic models to simulate an arabinose switch that decouples cell growth from metabolite production
title_short Unstructured kinetic models to simulate an arabinose switch that decouples cell growth from metabolite production
title_sort unstructured kinetic models to simulate an arabinose switch that decouples cell growth from metabolite production
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7364165/
https://www.ncbi.nlm.nih.gov/pubmed/32695893
http://dx.doi.org/10.1016/j.synbio.2020.07.003
work_keys_str_mv AT edwardsharley unstructuredkineticmodelstosimulateanarabinoseswitchthatdecouplescellgrowthfrommetaboliteproduction
AT xupeng unstructuredkineticmodelstosimulateanarabinoseswitchthatdecouplescellgrowthfrommetaboliteproduction