Cargando…
Semantic segmentation to identify bladder layers from H&E Images
BACKGROUND: Identification of bladder layers is a necessary prerequisite to bladder cancer diagnosis and prognosis. We present a method of multi-class image segmentation, which recognizes urothelium, lamina propria, muscularis propria, and muscularis mucosa layers as well as regions of red blood cel...
Autores principales: | Niazi, Muhammad Khalid Khan, Yazgan, Enes, Tavolara, Thomas E., Li, Wencheng, Lee, Cheryl T., Parwani, Anil, Gurcan, Metin N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7364471/ https://www.ncbi.nlm.nih.gov/pubmed/32677978 http://dx.doi.org/10.1186/s13000-020-01002-1 |
Ejemplares similares
-
Contrastive Multiple Instance Learning: An Unsupervised Framework for Learning Slide-Level Representations of Whole Slide Histopathology Images without Labels
por: Tavolara, Thomas E., et al.
Publicado: (2022) -
Identifying tumor in pancreatic neuroendocrine neoplasms from Ki67 images using transfer learning
por: Niazi, Muhammad Khalid Khan, et al.
Publicado: (2018) -
Author Correction: A modular cGAN classification framework: Application to colorectal tumor detection
por: Tavolara, Thomas E., et al.
Publicado: (2020) -
A modular cGAN classification framework: Application to colorectal tumor detection
por: Tavolara, Thomas E., et al.
Publicado: (2019) -
BCR-Net: A deep learning framework to predict breast cancer recurrence from histopathology images
por: Su, Ziyu, et al.
Publicado: (2023)