Cargando…
Pruned Machine Learning Models to Predict Aqueous Solubility
[Image: see text] Solubility is a key metric for therapeutic compounds. Conversely, insoluble compounds cloud the accuracy of assays at all stages of chemical biology and drug discovery. Herein, we disclose naïve Bayesian classifier models to predict aqueous solubility. Publicly accessible aqueous s...
Autores principales: | Perryman, Alexander L., Inoyama, Daigo, Patel, Jimmy S., Ekins, Sean, Freundlich, Joel S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7364544/ https://www.ncbi.nlm.nih.gov/pubmed/32685821 http://dx.doi.org/10.1021/acsomega.0c01251 |
Ejemplares similares
-
Machine Learning Model Analysis and Data Visualization
with Small Molecules Tested in a Mouse Model of Mycobacterium
tuberculosis Infection (2014–2015)
por: Ekins, Sean, et al.
Publicado: (2016) -
Machine learning models identify molecules active against the Ebola virus
in vitro
por: Ekins, Sean, et al.
Publicado: (2017) -
Ebola Virus Bayesian Machine Learning Models Enable
New in Vitro Leads
por: Anantpadma, Manu, et al.
Publicado: (2019) -
OpenZika: An IBM World Community Grid Project to Accelerate Zika Virus Drug Discovery
por: Ekins, Sean, et al.
Publicado: (2016) -
A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus
por: Ekins, Sean, et al.
Publicado: (2014)