Cargando…

Enhancing the Sensitivity of Biotinylated Surfaces by Tailoring the Design of the Mixed Self-Assembled Monolayer Synthesis

[Image: see text] Thiolated self-assembled monolayers (SAMs) are typically used to anchor on a gold surface biomolecules serving as recognition elements for biosensor applications. Here, the design and synthesis of N-(2-hydroxyethyl)-3-mercaptopropanamide (NMPA) in biotinylated mixed SAMs is propose...

Descripción completa

Detalles Bibliográficos
Autores principales: Blasi, Davide, Sarcina, Lucia, Tricase, Angelo, Stefanachi, Angela, Leonetti, Francesco, Alberga, Domenico, Mangiatordi, Giuseppe Felice, Manoli, Kyriaki, Scamarcio, Gaetano, Picca, Rosaria Anna, Torsi, Luisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7364725/
https://www.ncbi.nlm.nih.gov/pubmed/32685844
http://dx.doi.org/10.1021/acsomega.0c01717
Descripción
Sumario:[Image: see text] Thiolated self-assembled monolayers (SAMs) are typically used to anchor on a gold surface biomolecules serving as recognition elements for biosensor applications. Here, the design and synthesis of N-(2-hydroxyethyl)-3-mercaptopropanamide (NMPA) in biotinylated mixed SAMs is proposed as an alternative strategy with respect to on-site multistep functionalization of SAMs prepared from solutions of commercially available thiols. In this study, the mixed SAM deposited from a 10:1 solution of 3-mercaptopropionic acid (3MPA) and 11-mercaptoundecanoic acid (11MUA) is compared to that resulting from a 10:1 solution of NMPA:11MUA. To this end, surface plasmon resonance (SPR) and attenuated total reflectance infrared (ATR-IR) experiments have been carried out on both mixed SAMs after biotinylation. The study demonstrated how the fine tuning of the SAM features impacts directly on both the biofunctionalization steps, i.e., the biotin anchoring, and the biorecognition properties evaluated upon exposure to streptavidin analyte. Higher affinity for the target analyte with reduced nonspecific binding and lower detection limit has been demonstrated when NMPA is chosen as the more abundant starting thiol. Molecular dynamics simulations complemented the experimental findings providing a molecular rationale behind the performance of the biotinylated mixed SAMs. The present study confirms the importance of the functionalization design for the development of a highly performing biosensor.