Cargando…
Computational Prediction of Probable Single Nucleotide Polymorphism-Cancer Relationships
Genetic variations such as single nucleotide polymorphisms (SNPs) can cause susceptibility to cancer. Although thousands of genetic variants have been identified to be associated with different cancers, the molecular mechanisms of cancer remain unknown. There is not a particular dataset of relations...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7364831/ https://www.ncbi.nlm.nih.gov/pubmed/32728337 http://dx.doi.org/10.1177/1176935120942216 |
_version_ | 1783559907678617600 |
---|---|
author | Bakhtiari, Shahab Sulaimany, Sadegh Talebi, Mehrdad Kalhor, Kabmiz |
author_facet | Bakhtiari, Shahab Sulaimany, Sadegh Talebi, Mehrdad Kalhor, Kabmiz |
author_sort | Bakhtiari, Shahab |
collection | PubMed |
description | Genetic variations such as single nucleotide polymorphisms (SNPs) can cause susceptibility to cancer. Although thousands of genetic variants have been identified to be associated with different cancers, the molecular mechanisms of cancer remain unknown. There is not a particular dataset of relationships between cancer and SNPs, as a bipartite network, for computational analysis and prediction. Link prediction as a computational graph analysis method can help us to gain new insight into the network. In this article, after creating a network between cancer and SNPs using SNPedia and Cancer Research UK databases, we evaluated the computational link prediction methods to foresee new SNP-Cancer relationships. Results show that among the popular scoring methods based on network topology, for relation prediction, the preferential attachment (PA) algorithm is the most robust method according to computational and experimental evidence, and some of its computational predictions are corroborated in recent publications. According to the PA predictions, rs1801394-Non-small cell lung cancer, rs4880-Non-small cell lung cancer, and rs1805794-Colorectal cancer are some of the best probable SNP-Cancer associations that have not yet been mentioned in any published article, and they are the most probable candidates for additional laboratory and validation studies. Also, it is feasible to improve the predicting algorithms to produce new predictions in the future. |
format | Online Article Text |
id | pubmed-7364831 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-73648312020-07-28 Computational Prediction of Probable Single Nucleotide Polymorphism-Cancer Relationships Bakhtiari, Shahab Sulaimany, Sadegh Talebi, Mehrdad Kalhor, Kabmiz Cancer Inform Original Research Genetic variations such as single nucleotide polymorphisms (SNPs) can cause susceptibility to cancer. Although thousands of genetic variants have been identified to be associated with different cancers, the molecular mechanisms of cancer remain unknown. There is not a particular dataset of relationships between cancer and SNPs, as a bipartite network, for computational analysis and prediction. Link prediction as a computational graph analysis method can help us to gain new insight into the network. In this article, after creating a network between cancer and SNPs using SNPedia and Cancer Research UK databases, we evaluated the computational link prediction methods to foresee new SNP-Cancer relationships. Results show that among the popular scoring methods based on network topology, for relation prediction, the preferential attachment (PA) algorithm is the most robust method according to computational and experimental evidence, and some of its computational predictions are corroborated in recent publications. According to the PA predictions, rs1801394-Non-small cell lung cancer, rs4880-Non-small cell lung cancer, and rs1805794-Colorectal cancer are some of the best probable SNP-Cancer associations that have not yet been mentioned in any published article, and they are the most probable candidates for additional laboratory and validation studies. Also, it is feasible to improve the predicting algorithms to produce new predictions in the future. SAGE Publications 2020-07-15 /pmc/articles/PMC7364831/ /pubmed/32728337 http://dx.doi.org/10.1177/1176935120942216 Text en © The Author(s) 2020 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Research Bakhtiari, Shahab Sulaimany, Sadegh Talebi, Mehrdad Kalhor, Kabmiz Computational Prediction of Probable Single Nucleotide Polymorphism-Cancer Relationships |
title | Computational Prediction of Probable Single Nucleotide Polymorphism-Cancer Relationships |
title_full | Computational Prediction of Probable Single Nucleotide Polymorphism-Cancer Relationships |
title_fullStr | Computational Prediction of Probable Single Nucleotide Polymorphism-Cancer Relationships |
title_full_unstemmed | Computational Prediction of Probable Single Nucleotide Polymorphism-Cancer Relationships |
title_short | Computational Prediction of Probable Single Nucleotide Polymorphism-Cancer Relationships |
title_sort | computational prediction of probable single nucleotide polymorphism-cancer relationships |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7364831/ https://www.ncbi.nlm.nih.gov/pubmed/32728337 http://dx.doi.org/10.1177/1176935120942216 |
work_keys_str_mv | AT bakhtiarishahab computationalpredictionofprobablesinglenucleotidepolymorphismcancerrelationships AT sulaimanysadegh computationalpredictionofprobablesinglenucleotidepolymorphismcancerrelationships AT talebimehrdad computationalpredictionofprobablesinglenucleotidepolymorphismcancerrelationships AT kalhorkabmiz computationalpredictionofprobablesinglenucleotidepolymorphismcancerrelationships |