Cargando…
Radiomics-based Management of Indeterminate Lung Nodules? Are We There Yet?
Autores principales: | Peikert, Tobias, Bartholmai, Brian J., Maldonado, Fabien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Thoracic Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7365373/ https://www.ncbi.nlm.nih.gov/pubmed/32383972 http://dx.doi.org/10.1164/rccm.202004-1279ED |
Ejemplares similares
-
Do we need to see to believe?—radiomics for lung nodule classification and lung cancer risk stratification
por: Khawaja, Ali, et al.
Publicado: (2020) -
Novel high-resolution computed tomography-based radiomic classifier for screen-identified pulmonary nodules in the National Lung Screening Trial
por: Peikert, Tobias, et al.
Publicado: (2018) -
Correction: Novel high-resolution computed tomography-based radiomic classifier for screen-identified pulmonary nodules in the National Lung Screening Trial
por: Peikert, Tobias, et al.
Publicado: (2018) -
Computer-Aided Nodule Assessment and Risk Yield (CANARY) may facilitate non-invasive prediction of EGFR mutation status in lung adenocarcinomas
por: Clay, Ryan, et al.
Publicado: (2017) -
Longitudinal lung cancer prediction convolutional neural network model improves the classification of indeterminate pulmonary nodules
por: Paez, Rafael, et al.
Publicado: (2023)