Cargando…

Hypoglycemic activity of extracts of Chamaecyparis obtusa var. formosana leaf in rats with hyperglycemia induced by high-fat diets and streptozotocin

Chamaecyparis obtusa var. formosana is a species indigenous to Taiwan and has been used as a medicinal plant. It has been claimed that the hot water extracts of C. obtusa var. formosana leaves (CoLE) with flavonoids and proanthocyanidins have anti-oxidant and anti-hyperglycemic activities in vitro....

Descripción completa

Detalles Bibliográficos
Autores principales: Hsu, Chia-Yun, Lin, Gong-Min, Chang, Shang-Tzen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7365784/
https://www.ncbi.nlm.nih.gov/pubmed/32695656
http://dx.doi.org/10.1016/j.jtcme.2019.11.003
Descripción
Sumario:Chamaecyparis obtusa var. formosana is a species indigenous to Taiwan and has been used as a medicinal plant. It has been claimed that the hot water extracts of C. obtusa var. formosana leaves (CoLE) with flavonoids and proanthocyanidins have anti-oxidant and anti-hyperglycemic activities in vitro. This study further examines the anti-hyperglycemic activity of CoLE and its possible mechanisms in hyperglycemic rats. Hyperglycemia of rats was induced by streptozotocin (STZ) and high-fat diets (HFD). Hyperglycemic rats treated orally with 30 and 150 mg/kg CoLE were classified into LCO and HCO groups, respectively. After three-month treatment, both LCO and HCO groups showed improved glucose metabolism in oral glucose tolerance and postprandial blood glucose tests. Decrease in HOMA-IR, leptin and adiponectin levels of the HCO group revealed amelioration of insulin and leptin resistance. Obesity and accumulation of visceral fats induced by STZ and HFD could be alleviated in both HCO and LCO groups. These anti-diabetic effects might be contributed by inhibition of intestinal digested enzymes and protein tyrosine phosphatases (PTPases). Although other studies are necessary, these findings suggest that CoLE could be potentially used as a health complement for treating diabetes without significant toxicity.