Cargando…
Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation
Multimodal fusion in neuroimaging combines data from multiple imaging modalities to overcome the fundamental limitations of individual modalities. Neuroimaging fusion can achieve higher temporal and spatial resolution, enhance contrast, correct imaging distortions, and bridge physiological and cogni...
Autores principales: | Zhang, Yu-Dong, Dong, Zhengchao, Wang, Shui-Hua, Yu, Xiang, Yao, Xujing, Zhou, Qinghua, Hu, Hua, Li, Min, Jiménez-Mesa, Carmen, Ramirez, Javier, Martinez, Francisco J., Gorriz, Juan Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366126/ https://www.ncbi.nlm.nih.gov/pubmed/32834795 http://dx.doi.org/10.1016/j.inffus.2020.07.006 |
Ejemplares similares
-
An Overview of Multimodal Neuroimaging Using Nanoprobes
por: Sridhar, Sriram, et al.
Publicado: (2017) -
Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
por: Wang, Shui-Hua, et al.
Publicado: (2021) -
Editorial: Intelligent Recognition and Detection in Neuroimaging
por: Zhang, Yu-Dong, et al.
Publicado: (2022) -
Multimodal neuroimage data fusion based on multikernel learning in personalized medicine
por: Ran, Xue, et al.
Publicado: (2022) -
Chromatic fusion: generative multimodal neuroimaging data fusion provides multi-informed insights into schizophrenia
por: Geenjaar, Eloy P.T., et al.
Publicado: (2023)