Cargando…

Using Flexible Curved Noncontact Active Electrodes to Monitor Long-Term Heart Rate Variability

The purpose of this study is to utilize flexible curved noncontact active electrodes to develop a nonperception, long-term, and wireless heart rate monitoring system. This study also verified the functions and capabilities of the system and provided information on physiological parameters recorded d...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Ji-Jer, Cai, Zhe-Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366190/
https://www.ncbi.nlm.nih.gov/pubmed/32724505
http://dx.doi.org/10.1155/2020/8867712
Descripción
Sumario:The purpose of this study is to utilize flexible curved noncontact active electrodes to develop a nonperception, long-term, and wireless heart rate monitoring system. This study also verified the functions and capabilities of the system and provided information on physiological parameters recorded during our tests. Our system was used in tandem with a commercially standard measurement system; both systems were used to measure ECG signals on 10 healthy subjects under the simulated home and office scenarios. We verified the R-peak measurement accuracy of our system and used T-tests to analyze the data collected by both systems; our system reached an average sensitivity value of 0.983 and an average positive predictive value of 0.991 over several different scenarios where R-peak measurements were also highly accurate. The R-R time intervals of our system were highly consistent with the standard system. The correlation coefficient calculated reached almost one, and the differences between the two systems mostly fell within the ±10 ms range. Further study of the HRV time-domain parameters under four different scenarios showed no significant differences in most HRV parameters compared to the measurements by the standard system. We also used our system to record long-term heart rate signals.