Cargando…

A Multiscale CNN-CRF Framework for Environmental Microorganism Image Segmentation

To assist researchers to identify Environmental Microorganisms (EMs) effectively, a Multiscale CNN-CRF (MSCC) framework for the EM image segmentation is proposed in this paper. There are two parts in this framework: The first is a novel pixel-level segmentation approach, using a newly introduced Con...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jinghua, Li, Chen, Kulwa, Frank, Zhao, Xin, Sun, Changhao, Li, Zihan, Jiang, Tao, Li, Hong, Qi, Shouliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366198/
https://www.ncbi.nlm.nih.gov/pubmed/32724802
http://dx.doi.org/10.1155/2020/4621403
Descripción
Sumario:To assist researchers to identify Environmental Microorganisms (EMs) effectively, a Multiscale CNN-CRF (MSCC) framework for the EM image segmentation is proposed in this paper. There are two parts in this framework: The first is a novel pixel-level segmentation approach, using a newly introduced Convolutional Neural Network (CNN), namely, “mU-Net-B3”, with a dense Conditional Random Field (CRF) postprocessing. The second is a VGG-16 based patch-level segmentation method with a novel “buffer” strategy, which further improves the segmentation quality of the details of the EMs. In the experiment, compared with the state-of-the-art methods on 420 EM images, the proposed MSCC method reduces the memory requirement from 355 MB to 103 MB, improves the overall evaluation indexes (Dice, Jaccard, Recall, Accuracy) from 85.24%, 77.42%, 82.27%, and 96.76% to 87.13%, 79.74%, 87.12%, and 96.91%, respectively, and reduces the volume overlap error from 22.58% to 20.26%. Therefore, the MSCC method shows great potential in the EM segmentation field.