Cargando…
Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal–Semiconductor Nanojunctions
[Image: see text] Recent advances in guiding and localizing light at the nanoscale exposed the enormous potential of ultrascaled plasmonic devices. In this context, the decay of surface plasmons to hot carriers triggers a variety of applications in boosting the efficiency of energy-harvesting, photo...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366502/ https://www.ncbi.nlm.nih.gov/pubmed/32685608 http://dx.doi.org/10.1021/acsphotonics.0c00557 |
_version_ | 1783560236138758144 |
---|---|
author | Sistani, Masiar Bartmann, Maximilian G. Güsken, Nicholas A. Oulton, Rupert F. Keshmiri, Hamid Luong, Minh Anh Momtaz, Zahra Sadre Den Hertog, Martien I. Lugstein, Alois |
author_facet | Sistani, Masiar Bartmann, Maximilian G. Güsken, Nicholas A. Oulton, Rupert F. Keshmiri, Hamid Luong, Minh Anh Momtaz, Zahra Sadre Den Hertog, Martien I. Lugstein, Alois |
author_sort | Sistani, Masiar |
collection | PubMed |
description | [Image: see text] Recent advances in guiding and localizing light at the nanoscale exposed the enormous potential of ultrascaled plasmonic devices. In this context, the decay of surface plasmons to hot carriers triggers a variety of applications in boosting the efficiency of energy-harvesting, photocatalysis, and photodetection. However, a detailed understanding of plasmonic hot carrier generation and, particularly, the transfer at metal–semiconductor interfaces is still elusive. In this paper, we introduce a monolithic metal–semiconductor (Al–Ge) heterostructure device, providing a platform to examine surface plasmon decay and hot electron transfer at an atomically sharp Schottky nanojunction. The gated metal–semiconductor heterojunction device features electrostatic control of the Schottky barrier height at the Al–Ge interface, enabling hot electron filtering. The ability of momentum matching and to control the energy distribution of plasmon-driven hot electron injection is demonstrated by controlling the interband electron transfer in Ge, leading to negative differential resistance. |
format | Online Article Text |
id | pubmed-7366502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-73665022020-07-17 Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal–Semiconductor Nanojunctions Sistani, Masiar Bartmann, Maximilian G. Güsken, Nicholas A. Oulton, Rupert F. Keshmiri, Hamid Luong, Minh Anh Momtaz, Zahra Sadre Den Hertog, Martien I. Lugstein, Alois ACS Photonics [Image: see text] Recent advances in guiding and localizing light at the nanoscale exposed the enormous potential of ultrascaled plasmonic devices. In this context, the decay of surface plasmons to hot carriers triggers a variety of applications in boosting the efficiency of energy-harvesting, photocatalysis, and photodetection. However, a detailed understanding of plasmonic hot carrier generation and, particularly, the transfer at metal–semiconductor interfaces is still elusive. In this paper, we introduce a monolithic metal–semiconductor (Al–Ge) heterostructure device, providing a platform to examine surface plasmon decay and hot electron transfer at an atomically sharp Schottky nanojunction. The gated metal–semiconductor heterojunction device features electrostatic control of the Schottky barrier height at the Al–Ge interface, enabling hot electron filtering. The ability of momentum matching and to control the energy distribution of plasmon-driven hot electron injection is demonstrated by controlling the interband electron transfer in Ge, leading to negative differential resistance. American Chemical Society 2020-06-30 2020-07-15 /pmc/articles/PMC7366502/ /pubmed/32685608 http://dx.doi.org/10.1021/acsphotonics.0c00557 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Sistani, Masiar Bartmann, Maximilian G. Güsken, Nicholas A. Oulton, Rupert F. Keshmiri, Hamid Luong, Minh Anh Momtaz, Zahra Sadre Den Hertog, Martien I. Lugstein, Alois Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal–Semiconductor Nanojunctions |
title | Plasmon-Driven Hot Electron Transfer at Atomically
Sharp Metal–Semiconductor Nanojunctions |
title_full | Plasmon-Driven Hot Electron Transfer at Atomically
Sharp Metal–Semiconductor Nanojunctions |
title_fullStr | Plasmon-Driven Hot Electron Transfer at Atomically
Sharp Metal–Semiconductor Nanojunctions |
title_full_unstemmed | Plasmon-Driven Hot Electron Transfer at Atomically
Sharp Metal–Semiconductor Nanojunctions |
title_short | Plasmon-Driven Hot Electron Transfer at Atomically
Sharp Metal–Semiconductor Nanojunctions |
title_sort | plasmon-driven hot electron transfer at atomically
sharp metal–semiconductor nanojunctions |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366502/ https://www.ncbi.nlm.nih.gov/pubmed/32685608 http://dx.doi.org/10.1021/acsphotonics.0c00557 |
work_keys_str_mv | AT sistanimasiar plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions AT bartmannmaximiliang plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions AT guskennicholasa plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions AT oultonrupertf plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions AT keshmirihamid plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions AT luongminhanh plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions AT momtazzahrasadre plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions AT denhertogmartieni plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions AT lugsteinalois plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions |