Cargando…

Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal–Semiconductor Nanojunctions

[Image: see text] Recent advances in guiding and localizing light at the nanoscale exposed the enormous potential of ultrascaled plasmonic devices. In this context, the decay of surface plasmons to hot carriers triggers a variety of applications in boosting the efficiency of energy-harvesting, photo...

Descripción completa

Detalles Bibliográficos
Autores principales: Sistani, Masiar, Bartmann, Maximilian G., Güsken, Nicholas A., Oulton, Rupert F., Keshmiri, Hamid, Luong, Minh Anh, Momtaz, Zahra Sadre, Den Hertog, Martien I., Lugstein, Alois
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366502/
https://www.ncbi.nlm.nih.gov/pubmed/32685608
http://dx.doi.org/10.1021/acsphotonics.0c00557
_version_ 1783560236138758144
author Sistani, Masiar
Bartmann, Maximilian G.
Güsken, Nicholas A.
Oulton, Rupert F.
Keshmiri, Hamid
Luong, Minh Anh
Momtaz, Zahra Sadre
Den Hertog, Martien I.
Lugstein, Alois
author_facet Sistani, Masiar
Bartmann, Maximilian G.
Güsken, Nicholas A.
Oulton, Rupert F.
Keshmiri, Hamid
Luong, Minh Anh
Momtaz, Zahra Sadre
Den Hertog, Martien I.
Lugstein, Alois
author_sort Sistani, Masiar
collection PubMed
description [Image: see text] Recent advances in guiding and localizing light at the nanoscale exposed the enormous potential of ultrascaled plasmonic devices. In this context, the decay of surface plasmons to hot carriers triggers a variety of applications in boosting the efficiency of energy-harvesting, photocatalysis, and photodetection. However, a detailed understanding of plasmonic hot carrier generation and, particularly, the transfer at metal–semiconductor interfaces is still elusive. In this paper, we introduce a monolithic metal–semiconductor (Al–Ge) heterostructure device, providing a platform to examine surface plasmon decay and hot electron transfer at an atomically sharp Schottky nanojunction. The gated metal–semiconductor heterojunction device features electrostatic control of the Schottky barrier height at the Al–Ge interface, enabling hot electron filtering. The ability of momentum matching and to control the energy distribution of plasmon-driven hot electron injection is demonstrated by controlling the interband electron transfer in Ge, leading to negative differential resistance.
format Online
Article
Text
id pubmed-7366502
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-73665022020-07-17 Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal–Semiconductor Nanojunctions Sistani, Masiar Bartmann, Maximilian G. Güsken, Nicholas A. Oulton, Rupert F. Keshmiri, Hamid Luong, Minh Anh Momtaz, Zahra Sadre Den Hertog, Martien I. Lugstein, Alois ACS Photonics [Image: see text] Recent advances in guiding and localizing light at the nanoscale exposed the enormous potential of ultrascaled plasmonic devices. In this context, the decay of surface plasmons to hot carriers triggers a variety of applications in boosting the efficiency of energy-harvesting, photocatalysis, and photodetection. However, a detailed understanding of plasmonic hot carrier generation and, particularly, the transfer at metal–semiconductor interfaces is still elusive. In this paper, we introduce a monolithic metal–semiconductor (Al–Ge) heterostructure device, providing a platform to examine surface plasmon decay and hot electron transfer at an atomically sharp Schottky nanojunction. The gated metal–semiconductor heterojunction device features electrostatic control of the Schottky barrier height at the Al–Ge interface, enabling hot electron filtering. The ability of momentum matching and to control the energy distribution of plasmon-driven hot electron injection is demonstrated by controlling the interband electron transfer in Ge, leading to negative differential resistance. American Chemical Society 2020-06-30 2020-07-15 /pmc/articles/PMC7366502/ /pubmed/32685608 http://dx.doi.org/10.1021/acsphotonics.0c00557 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Sistani, Masiar
Bartmann, Maximilian G.
Güsken, Nicholas A.
Oulton, Rupert F.
Keshmiri, Hamid
Luong, Minh Anh
Momtaz, Zahra Sadre
Den Hertog, Martien I.
Lugstein, Alois
Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal–Semiconductor Nanojunctions
title Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal–Semiconductor Nanojunctions
title_full Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal–Semiconductor Nanojunctions
title_fullStr Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal–Semiconductor Nanojunctions
title_full_unstemmed Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal–Semiconductor Nanojunctions
title_short Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal–Semiconductor Nanojunctions
title_sort plasmon-driven hot electron transfer at atomically sharp metal–semiconductor nanojunctions
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366502/
https://www.ncbi.nlm.nih.gov/pubmed/32685608
http://dx.doi.org/10.1021/acsphotonics.0c00557
work_keys_str_mv AT sistanimasiar plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions
AT bartmannmaximiliang plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions
AT guskennicholasa plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions
AT oultonrupertf plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions
AT keshmirihamid plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions
AT luongminhanh plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions
AT momtazzahrasadre plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions
AT denhertogmartieni plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions
AT lugsteinalois plasmondrivenhotelectrontransferatatomicallysharpmetalsemiconductornanojunctions