Cargando…
Does linear equating improve prediction in mapping? Crosswalking MacNew onto EQ-5D-5L value sets
PURPOSE: Preference-based measures are essential for producing quality-adjusted life years (QALYs) that are widely used for economic evaluations. In the absence of such measures, mapping algorithms can be applied to estimate utilities from disease-specific measures. This paper aims to develop mappin...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366565/ https://www.ncbi.nlm.nih.gov/pubmed/32300999 http://dx.doi.org/10.1007/s10198-020-01183-y |
Sumario: | PURPOSE: Preference-based measures are essential for producing quality-adjusted life years (QALYs) that are widely used for economic evaluations. In the absence of such measures, mapping algorithms can be applied to estimate utilities from disease-specific measures. This paper aims to develop mapping algorithms between the MacNew Heart Disease Quality of Life Questionnaire (MacNew) instrument and the English and the US-based EQ-5D-5L value sets. METHODS: Individuals with heart disease were recruited from six countries: Australia, Canada, Germany, Norway, UK and the US in 2011/12. Both parametric and non-parametric statistical techniques were applied to estimate mapping algorithms that predict utilities for MacNew scores from EQ-5D-5L value sets. The optimal algorithm for each country-specific value set was primarily selected based on root mean square error (RMSE), mean absolute error (MAE), concordance correlation coefficient (CCC), and r-squared. Leave-one-out cross-validation was conducted to test the generalizability of each model. RESULTS: For both the English and the US value sets, the one-inflated beta regression model consistently performed best in terms of all criteria. Similar results were observed for the cross-validation results. The preferred model explained 59 and 60% for the English and the US value set, respectively. Linear equating provided predicted values that were equivalent to observed values. CONCLUSIONS: The preferred mapping function enables to predict utilities for MacNew data from the EQ-5D-5L value sets recently developed in England and the US with better accuracy. This allows studies, which have included the MacNew to be used in cost-utility analyses and thus, the comparison of services with interventions across the health system. |
---|