Cargando…
Two-dimensional square lattice polonium stabilized by the spin–orbit coupling
Polonium is known as the only simple metal that has the simple cubic (SC) lattice in three dimension. There is a debate about whether the stabilized SC structure is attributed to the scalar relativistic effect or the spin–orbit coupling (SOC). Here, we study another phase, two-dimensional (2D) polon...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366658/ https://www.ncbi.nlm.nih.gov/pubmed/32678271 http://dx.doi.org/10.1038/s41598-020-68877-4 |
Sumario: | Polonium is known as the only simple metal that has the simple cubic (SC) lattice in three dimension. There is a debate about whether the stabilized SC structure is attributed to the scalar relativistic effect or the spin–orbit coupling (SOC). Here, we study another phase, two-dimensional (2D) polonium (poloniumene), by performing density-functional theory calculations. We show that the 2D polonium has the square lattice structure as its ground state and demonstrate that the SOC (beyond the scalar relativistic approximation) suppresses the Peierls instability and is necessary to obtain no imaginary phonon frequencies over the Brillouin zone. |
---|