Cargando…
A fully automated artificial intelligence method for non-invasive, imaging-based identification of genetic alterations in glioblastomas
Glioblastoma is the most common malignant brain parenchymal tumor yet remains challenging to treat. The current standard of care—resection and chemoradiation—is limited in part due to the genetic heterogeneity of glioblastoma. Previous studies have identified several tumor genetic biomarkers that ar...
Autores principales: | Calabrese, Evan, Villanueva-Meyer, Javier E., Cha, Soonmee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366666/ https://www.ncbi.nlm.nih.gov/pubmed/32678261 http://dx.doi.org/10.1038/s41598-020-68857-8 |
Ejemplares similares
-
Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma
por: Calabrese, Evan, et al.
Publicado: (2022) -
Biologically aggressive regions within glioblastoma identified by spin-lock contrast T1 relaxation in the rotating frame (T1ρ) MRI
por: Barajas, Ramon Francisco, et al.
Publicado: (2017) -
Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms
por: Goto, Shinichi, et al.
Publicado: (2021) -
Evaluation of fully automated cephalometric measurements obtained from web-based artificial intelligence driven platform
por: Mahto, Ravi Kumar, et al.
Publicado: (2022) -
Artificial intelligence fully automated myocardial strain quantification for risk stratification following acute myocardial infarction
por: Backhaus, Sören J., et al.
Publicado: (2022)