Cargando…

BAFF attenuates oxidative stress-induced cell death by the regulation of mitochondria membrane potential via Syk activation in WiL2-NS B lymphoblasts

Cell survival is facilitated by the maintenance of mitochondrial membrane potential (MMP). B cell activating factor (BAFF) plays a role in survival, differentiation, and maturation of B cells. In the present study, we examined whether BAFF could attenuate oxidative stress-induced B cell death by the...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Sojin, Jang, Ju-Won, Moon, Eun-Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366908/
https://www.ncbi.nlm.nih.gov/pubmed/32678160
http://dx.doi.org/10.1038/s41598-020-68628-5
Descripción
Sumario:Cell survival is facilitated by the maintenance of mitochondrial membrane potential (MMP). B cell activating factor (BAFF) plays a role in survival, differentiation, and maturation of B cells. In the present study, we examined whether BAFF could attenuate oxidative stress-induced B cell death by the regulation of MMP collapse via spleen tyrosine kinase (Syk) activation using WiL2-NS human B lymphoblast cells. BAFF binds to receptors on WiL2-NS cells. When the cells were incubated in serum-deprived conditions with 1% fetal bovine serum (FBS), BAFF reduced the percentage of dead cells as determined through trypan blue staining and caspase 3 activity. BAFF also inhibited MMP collapse with 1% FBS, as indicated by a decrease in the number of cells with high-red fluorescence of MitoProbe™ JC-1 reagent or a decrease in the percentage of DiOC(6)-stained cells. Reactive oxygen species (ROS) production was reduced by incubation with BAFF in the presence of 10% or 1% FBS. BAFF inhibited MMP collapse, cell growth retardation, dead cell formation, and caspase 3 activation caused by treatment with H(2)O(2). Syk phosphorylation on tyrosine (Y) 525/526 was increased in cells incubated with 1% FBS in the presence of BAFF than cells incubated with 1% FBS or BAFF alone. BAY61-3606, a Syk inhibitor reduced the effect of BAFF on MMP collapse, caspase 3 activation, cell growth retardation, and dead cell formation. Together, these data demonstrate that BAFF might attenuate oxidative stress-induced B cell death and growth retardation by the maintenance of MMP through Syk activation by Y525/526 phosphorylation. Therefore, BAFF and Syk might be therapeutic targets in the pathogenesis of B cell-associated diseases such as autoimmune disease.