Cargando…
Tall fescue sward structure affects the grazing process of sheep
The study of factors influencing animal intake can provide a better understanding of the dynamics of the pasture ecosystem and serve as a basis for managing livestock in a more efficient way. We measured different sward surface heights of tall fescue in the process of short-term intake rate of sheep...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366922/ https://www.ncbi.nlm.nih.gov/pubmed/32678270 http://dx.doi.org/10.1038/s41598-020-68827-0 |
Sumario: | The study of factors influencing animal intake can provide a better understanding of the dynamics of the pasture ecosystem and serve as a basis for managing livestock in a more efficient way. We measured different sward surface heights of tall fescue in the process of short-term intake rate of sheep. There was a significant effect of sward surface height on herbage mass (P < 0.001), leaf lamina mass (P < 0.001), other species mass (P = 0.02), bite mass (P = 0.01) and short-term intake rate (P = 0.03) of sheep. There was a quadratic fit between time per bite and bite mass (P = 0.006). Multivariate analysis showed that the short-term intake rate and bite mass were positively correlated (r = 0.97), bite rate and total jaw movement rate were positively correlated but both were negatively correlated with time per bite. The sward surface height of tall fescue corresponding to the maximum short-term herbage intake rate was 22.3 cm. The underlying processes were driven by the bite mass, which was influenced by the leaf lamina bulk density and its consequences upon time per bite. This sward surface height can be adopted as a pre-grazing target for rotational stocking systems to optimize sheep nutrition on pastures. |
---|