Cargando…
Analysis of spatiotemporal characteristics of big data on social media sentiment with COVID-19 epidemic topics
COVID-19 blocked Wuhan in China, which was sealed off on Chinese New Year's Eve. During this period, the research on the relevant topics of COVID-19 and emotional expressions published on social media can provide decision support for the management and control of large-scale public health event...
Autores principales: | Zhu, Bangren, Zheng, Xinqi, Liu, Haiyan, Li, Jiayang, Wang, Peipei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367019/ https://www.ncbi.nlm.nih.gov/pubmed/32834635 http://dx.doi.org/10.1016/j.chaos.2020.110123 |
Ejemplares similares
-
Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics
por: Wang, Peipei, et al.
Publicado: (2020) -
Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran
por: Wang, Peipei, et al.
Publicado: (2020) -
Artificial Intelligence–Enabled Analysis of Statin-Related Topics and Sentiments on Social Media
por: Somani, Sulaiman, et al.
Publicado: (2023) -
Physical rehabilitation on social media during COVID-19: Topics and sentiments analysis of tweets
por: Yoo, Myungeun, et al.
Publicado: (2022) -
Understanding heterogeneity of investor sentiment on social media: A structural topic modeling approach
por: Ji, Rongjiao, et al.
Publicado: (2022)