Cargando…
Structure-guided DNA–DNA attraction mediated by divalent cations
Probing the role of surface structure in electrostatic interactions, we report the first observation of sequence-dependent dsDNA condensation by divalent alkaline earth metal cations. Disparate behaviors were found between two repeating sequences with 100% AT content, a poly(A)-poly(T) duplex (AA-TT...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367160/ https://www.ncbi.nlm.nih.gov/pubmed/32542319 http://dx.doi.org/10.1093/nar/gkaa499 |
_version_ | 1783560365131431936 |
---|---|
author | Srivastava, Amit Timsina, Raju Heo, Seung Dewage, Sajeewa W Kirmizialtin, Serdal Qiu, Xiangyun |
author_facet | Srivastava, Amit Timsina, Raju Heo, Seung Dewage, Sajeewa W Kirmizialtin, Serdal Qiu, Xiangyun |
author_sort | Srivastava, Amit |
collection | PubMed |
description | Probing the role of surface structure in electrostatic interactions, we report the first observation of sequence-dependent dsDNA condensation by divalent alkaline earth metal cations. Disparate behaviors were found between two repeating sequences with 100% AT content, a poly(A)-poly(T) duplex (AA-TT) and a poly(AT)-poly(TA) duplex (AT-TA). While AT-TA exhibits non-distinguishable behaviors from random-sequence genomic DNA, AA-TT condenses in all alkaline earth metal ions. We characterized these interactions experimentally and investigated the underlying principles using computer simulations. Both experiments and simulations demonstrate that AA-TT condensation is driven by non-specific ion–DNA interactions. Detailed analyses reveal sequence-enhanced major groove binding (SEGB) of point-charged alkali ions as the major difference between AA-TT and AT-TA, which originates from the continuous and close stacking of nucleobase partial charges. These SEGB cations elicit attraction via spatial juxtaposition with the phosphate backbone of neighboring helices, resulting in an azimuthal angular shift between apposing helices. Our study thus presents a distinct mechanism in which, sequence-directed surface motifs act with cations non-specifically to enact sequence-dependent behaviors. This physical insight allows a renewed understanding of the role of repeating sequences in genome organization and regulation and offers a facile approach for DNA technology to control the assembly process of nanostructures. |
format | Online Article Text |
id | pubmed-7367160 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-73671602020-07-22 Structure-guided DNA–DNA attraction mediated by divalent cations Srivastava, Amit Timsina, Raju Heo, Seung Dewage, Sajeewa W Kirmizialtin, Serdal Qiu, Xiangyun Nucleic Acids Res Chemical Biology and Nucleic Acid Chemistry Probing the role of surface structure in electrostatic interactions, we report the first observation of sequence-dependent dsDNA condensation by divalent alkaline earth metal cations. Disparate behaviors were found between two repeating sequences with 100% AT content, a poly(A)-poly(T) duplex (AA-TT) and a poly(AT)-poly(TA) duplex (AT-TA). While AT-TA exhibits non-distinguishable behaviors from random-sequence genomic DNA, AA-TT condenses in all alkaline earth metal ions. We characterized these interactions experimentally and investigated the underlying principles using computer simulations. Both experiments and simulations demonstrate that AA-TT condensation is driven by non-specific ion–DNA interactions. Detailed analyses reveal sequence-enhanced major groove binding (SEGB) of point-charged alkali ions as the major difference between AA-TT and AT-TA, which originates from the continuous and close stacking of nucleobase partial charges. These SEGB cations elicit attraction via spatial juxtaposition with the phosphate backbone of neighboring helices, resulting in an azimuthal angular shift between apposing helices. Our study thus presents a distinct mechanism in which, sequence-directed surface motifs act with cations non-specifically to enact sequence-dependent behaviors. This physical insight allows a renewed understanding of the role of repeating sequences in genome organization and regulation and offers a facile approach for DNA technology to control the assembly process of nanostructures. Oxford University Press 2020-07-27 2020-06-15 /pmc/articles/PMC7367160/ /pubmed/32542319 http://dx.doi.org/10.1093/nar/gkaa499 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Chemical Biology and Nucleic Acid Chemistry Srivastava, Amit Timsina, Raju Heo, Seung Dewage, Sajeewa W Kirmizialtin, Serdal Qiu, Xiangyun Structure-guided DNA–DNA attraction mediated by divalent cations |
title | Structure-guided DNA–DNA attraction mediated by divalent cations |
title_full | Structure-guided DNA–DNA attraction mediated by divalent cations |
title_fullStr | Structure-guided DNA–DNA attraction mediated by divalent cations |
title_full_unstemmed | Structure-guided DNA–DNA attraction mediated by divalent cations |
title_short | Structure-guided DNA–DNA attraction mediated by divalent cations |
title_sort | structure-guided dna–dna attraction mediated by divalent cations |
topic | Chemical Biology and Nucleic Acid Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367160/ https://www.ncbi.nlm.nih.gov/pubmed/32542319 http://dx.doi.org/10.1093/nar/gkaa499 |
work_keys_str_mv | AT srivastavaamit structureguideddnadnaattractionmediatedbydivalentcations AT timsinaraju structureguideddnadnaattractionmediatedbydivalentcations AT heoseung structureguideddnadnaattractionmediatedbydivalentcations AT dewagesajeewaw structureguideddnadnaattractionmediatedbydivalentcations AT kirmizialtinserdal structureguideddnadnaattractionmediatedbydivalentcations AT qiuxiangyun structureguideddnadnaattractionmediatedbydivalentcations |