Cargando…

Early urinary protein changes during tumor formation in a NuTu-19 tail vein injection rat model

Early detection of cancer is essential for effective intervention. Urine has been used to reflect early changes in various tumor-bearing models. However, urine has not been used to predict whether tumors will form in animal models. In this study, a cancer model was established by tail vein injection...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Jing, Ni, Na, Meng, Wenshu, Huan, Yuhang, Gao, Youhe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367258/
https://www.ncbi.nlm.nih.gov/pubmed/32678190
http://dx.doi.org/10.1038/s41598-020-68674-z
Descripción
Sumario:Early detection of cancer is essential for effective intervention. Urine has been used to reflect early changes in various tumor-bearing models. However, urine has not been used to predict whether tumors will form in animal models. In this study, a cancer model was established by tail vein injection of 2 million NuTu-19 tumor cells. Urine samples were randomly selected from tumor-forming and non-tumor-forming rats on day 0/12/27/39/52 and were analyzed by label-free and parallel reaction monitoring targeted proteomic quantitative analyses. In tumor-forming rats, differential proteins were associated with tumor cell migration, TGF-β signaling and the STAT3 pathway. A total of 9 urinary proteins showed significant changes in the early phase of lung tumor formation in all eight tumor-bearing rats. Differential proteins in non-tumor-forming rats were associated with glutathione biosynthesis, IL-12 signaling and vitamin metabolism. A total of 12 urinary proteins changed significantly in the early phase in all seven non-tumor-forming rats. Our small-scale pilot study indicated that (1) the urinary proteome reflects early changes during lung tumor formation and that (2) the urinary proteome can distinguish early tumor-forming rats from non-tumor-forming rats.