Cargando…
Bayesian method for inferring the impact of geographical distance on intensity of communication
Spatially-embedded networks represent a large class of real-world networks of great scientific and societal interest. For example, transportation networks (such as railways), communication networks (such as Internet routers), and biological networks (such as fungal foraging networks) are all spatial...
Autores principales: | Ozga, Fei, Onnela, Jukka-Pekka, DeGruttola, Victor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367279/ https://www.ncbi.nlm.nih.gov/pubmed/32678148 http://dx.doi.org/10.1038/s41598-020-68583-1 |
Ejemplares similares
-
Bayesian Estimation of Mixture Models with Prespecified Elements to Compare Drug Resistance in Treatment-Naïve and Experienced Tuberculosis Cases
por: Izu, Alane, et al.
Publicado: (2013) -
Estimating mono- and bi-phasic regression parameters using a mixture piecewise linear Bayesian hierarchical model
por: Zhao, Rui, et al.
Publicado: (2017) -
Geographic Constraints on Social Network Groups
por: Onnela, Jukka-Pekka, et al.
Publicado: (2011) -
A Bootstrap Method for Goodness of Fit and Model Selection with a Single Observed Network
por: Chen, Sixing, et al.
Publicado: (2019) -
Modeling the Perception of Audiovisual Distance: Bayesian Causal Inference and Other Models
por: Mendonça, Catarina, et al.
Publicado: (2016)