Cargando…
Histopathological distinction of non-invasive and invasive bladder cancers using machine learning approaches
BACKGROUND: One of the most challenging tasks for bladder cancer diagnosis is to histologically differentiate two early stages, non-invasive Ta and superficially invasive T1, the latter of which is associated with a significantly higher risk of disease progression. Indeed, in a considerable number o...
Autores principales: | Yin, Peng-Nien, KC, Kishan, Wei, Shishi, Yu, Qi, Li, Rui, Haake, Anne R., Miyamoto, Hiroshi, Cui, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367328/ https://www.ncbi.nlm.nih.gov/pubmed/32680493 http://dx.doi.org/10.1186/s12911-020-01185-z |
Ejemplares similares
-
Deep learning for histopathological segmentation of smooth muscle in the urinary bladder
por: Subramanya, Sridevi K., et al.
Publicado: (2023) -
GNE: a deep learning framework for gene network inference by aggregating biological information
por: KC, Kishan, et al.
Publicado: (2019) -
Predicting Biomedical Interactions with Higher-Order Graph Convolutional Networks
por: KC, Kishan, et al.
Publicado: (2022) -
Histopathological Analysis of Invasive Bladder Carcinomas Induced by 3,2′‐Dimethyl‐4‐aminobiphenyl in Hamsters
por: Cui, Lin, et al.
Publicado: (1996) -
Metabolomics analysis reveals distinct profiles of nonmuscle‐invasive and muscle‐invasive bladder cancer
por: Sahu, Divya, et al.
Publicado: (2017)