Cargando…
Inference and prediction of malaria transmission dynamics using time series data
BACKGROUND: Disease surveillance systems are essential for effective disease intervention and control by monitoring disease prevalence as time series. To evaluate the severity of an epidemic, statistical methods are widely used to forecast the trend, seasonality, and the possible number of infection...
Autores principales: | Shi, Benyun, Lin, Shan, Tan, Qi, Cao, Jie, Zhou, Xiaohong, Xia, Shang, Zhou, Xiao-Nong, Liu, Jiming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367373/ https://www.ncbi.nlm.nih.gov/pubmed/32678025 http://dx.doi.org/10.1186/s40249-020-00696-1 |
Ejemplares similares
-
Inferring Plasmodium vivax Transmission Networks from Tempo-Spatial Surveillance Data
por: Shi, Benyun, et al.
Publicado: (2014) -
Inferring the Spatio-temporal Patterns of Dengue Transmission from Surveillance Data in Guangzhou, China
por: Zhu, Guanghu, et al.
Publicado: (2016) -
Inferring the potential risks of H7N9 infection by spatiotemporally characterizing bird migration and poultry distribution in eastern China
por: Shi, Benyun, et al.
Publicado: (2013) -
Accessing the syndemic of COVID-19 and malaria intervention in Africa
por: Shi, Benyun, et al.
Publicado: (2021) -
Risk assessment of malaria transmission at the border area of China and Myanmar
por: Shi, Benyun, et al.
Publicado: (2017)