Cargando…
An Ensemble Learning Strategy for Eligibility Criteria Text Classification for Clinical Trial Recruitment: Algorithm Development and Validation
BACKGROUND: Eligibility criteria are the main strategy for screening appropriate participants for clinical trials. Automatic analysis of clinical trial eligibility criteria by digital screening, leveraging natural language processing techniques, can improve recruitment efficiency and reduce the cost...
Autores principales: | Zeng, Kun, Pan, Zhiwei, Xu, Yibin, Qu, Yingying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367522/ https://www.ncbi.nlm.nih.gov/pubmed/32609092 http://dx.doi.org/10.2196/17832 |
Ejemplares similares
-
Automated classification of clinical trial eligibility criteria text based on ensemble learning and metric learning
por: Zeng, Kun, et al.
Publicado: (2021) -
Ensemble hybrid model for Hindi COVID-19 text classification with metaheuristic optimization algorithm
por: Jain, Vipin, et al.
Publicado: (2022) -
Improving the Efficiency of Clinical Trial Recruitment Using an Ensemble Machine Learning to Assist With Eligibility Screening
por: Cai, Tianrun, et al.
Publicado: (2021) -
The criteria of eligibility to the extracorporeal treatment
por: Zangrillo, A
Publicado: (2012) -
UN convention on the rights of persons with disability, eligibility criteria and the International Classification of Functioning Disability and Health
por: Francescutti, Carlo
Publicado: (2011)