Cargando…
Microbes modulate sympathetic neurons via a gut-brain circuit
Gut-brain connections monitor the intestinal tissue and its microbial and dietary content(1), regulating both intestinal physiological functions such as nutrient absorption and motility(2,3), and brain–wired feeding behaviour(2). It is therefore plausible that circuits exist to detect gut microbes a...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367767/ https://www.ncbi.nlm.nih.gov/pubmed/32641826 http://dx.doi.org/10.1038/s41586-020-2474-7 |
_version_ | 1783560478248665088 |
---|---|
author | Muller, Paul A. Schneeberger, Marc Matheis, Fanny Wang, Putianqi Kerner, Zachary Ilanges, Anoj Pellegrino, Kyle del Mármol, Josefina Castro, Tiago B. R. Furuichi, Munehiro Perkins, Matthew Han, Wenfei Rao, Arka Picard, Amanda J. Cross, Justin R. Honda, Kenya de Araujo, Ivan Mucida, Daniel |
author_facet | Muller, Paul A. Schneeberger, Marc Matheis, Fanny Wang, Putianqi Kerner, Zachary Ilanges, Anoj Pellegrino, Kyle del Mármol, Josefina Castro, Tiago B. R. Furuichi, Munehiro Perkins, Matthew Han, Wenfei Rao, Arka Picard, Amanda J. Cross, Justin R. Honda, Kenya de Araujo, Ivan Mucida, Daniel |
author_sort | Muller, Paul A. |
collection | PubMed |
description | Gut-brain connections monitor the intestinal tissue and its microbial and dietary content(1), regulating both intestinal physiological functions such as nutrient absorption and motility(2,3), and brain–wired feeding behaviour(2). It is therefore plausible that circuits exist to detect gut microbes and relay this information to central nervous system (CNS) areas that, in turn, regulate gut physiology(4). We characterized the influence of the microbiota on enteric–associated neurons (EAN) by combining gnotobiotic mouse models with transcriptomics, circuit–tracing methods, and functional manipulations. We found that the gut microbiome modulates gut–extrinsic sympathetic neurons; while microbiota depletion led to increased cFos expression, colonization of germ-free mice with short-chain fatty acid–producing bacteria suppressed cFos expression in the gut sympathetic ganglia. Chemogenetic manipulations, translational profiling, and anterograde tracing identified a subset of distal intestine-projecting vagal neurons positioned to play an afferent role in microbiota–mediated modulation of gut sympathetic neurons. Retrograde polysynaptic neuronal tracing from the intestinal wall identified brainstem sensory nuclei activated during microbial depletion, as well as efferent sympathetic premotor glutamatergic neurons that regulate gastrointestinal transit. These results reveal microbiota–dependent control of gut extrinsic sympathetic activation through a gut-brain circuit. |
format | Online Article Text |
id | pubmed-7367767 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-73677672021-01-08 Microbes modulate sympathetic neurons via a gut-brain circuit Muller, Paul A. Schneeberger, Marc Matheis, Fanny Wang, Putianqi Kerner, Zachary Ilanges, Anoj Pellegrino, Kyle del Mármol, Josefina Castro, Tiago B. R. Furuichi, Munehiro Perkins, Matthew Han, Wenfei Rao, Arka Picard, Amanda J. Cross, Justin R. Honda, Kenya de Araujo, Ivan Mucida, Daniel Nature Article Gut-brain connections monitor the intestinal tissue and its microbial and dietary content(1), regulating both intestinal physiological functions such as nutrient absorption and motility(2,3), and brain–wired feeding behaviour(2). It is therefore plausible that circuits exist to detect gut microbes and relay this information to central nervous system (CNS) areas that, in turn, regulate gut physiology(4). We characterized the influence of the microbiota on enteric–associated neurons (EAN) by combining gnotobiotic mouse models with transcriptomics, circuit–tracing methods, and functional manipulations. We found that the gut microbiome modulates gut–extrinsic sympathetic neurons; while microbiota depletion led to increased cFos expression, colonization of germ-free mice with short-chain fatty acid–producing bacteria suppressed cFos expression in the gut sympathetic ganglia. Chemogenetic manipulations, translational profiling, and anterograde tracing identified a subset of distal intestine-projecting vagal neurons positioned to play an afferent role in microbiota–mediated modulation of gut sympathetic neurons. Retrograde polysynaptic neuronal tracing from the intestinal wall identified brainstem sensory nuclei activated during microbial depletion, as well as efferent sympathetic premotor glutamatergic neurons that regulate gastrointestinal transit. These results reveal microbiota–dependent control of gut extrinsic sympathetic activation through a gut-brain circuit. 2020-07-08 2020-07 /pmc/articles/PMC7367767/ /pubmed/32641826 http://dx.doi.org/10.1038/s41586-020-2474-7 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Muller, Paul A. Schneeberger, Marc Matheis, Fanny Wang, Putianqi Kerner, Zachary Ilanges, Anoj Pellegrino, Kyle del Mármol, Josefina Castro, Tiago B. R. Furuichi, Munehiro Perkins, Matthew Han, Wenfei Rao, Arka Picard, Amanda J. Cross, Justin R. Honda, Kenya de Araujo, Ivan Mucida, Daniel Microbes modulate sympathetic neurons via a gut-brain circuit |
title | Microbes modulate sympathetic neurons via a gut-brain circuit |
title_full | Microbes modulate sympathetic neurons via a gut-brain circuit |
title_fullStr | Microbes modulate sympathetic neurons via a gut-brain circuit |
title_full_unstemmed | Microbes modulate sympathetic neurons via a gut-brain circuit |
title_short | Microbes modulate sympathetic neurons via a gut-brain circuit |
title_sort | microbes modulate sympathetic neurons via a gut-brain circuit |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367767/ https://www.ncbi.nlm.nih.gov/pubmed/32641826 http://dx.doi.org/10.1038/s41586-020-2474-7 |
work_keys_str_mv | AT mullerpaula microbesmodulatesympatheticneuronsviaagutbraincircuit AT schneebergermarc microbesmodulatesympatheticneuronsviaagutbraincircuit AT matheisfanny microbesmodulatesympatheticneuronsviaagutbraincircuit AT wangputianqi microbesmodulatesympatheticneuronsviaagutbraincircuit AT kernerzachary microbesmodulatesympatheticneuronsviaagutbraincircuit AT ilangesanoj microbesmodulatesympatheticneuronsviaagutbraincircuit AT pellegrinokyle microbesmodulatesympatheticneuronsviaagutbraincircuit AT delmarmoljosefina microbesmodulatesympatheticneuronsviaagutbraincircuit AT castrotiagobr microbesmodulatesympatheticneuronsviaagutbraincircuit AT furuichimunehiro microbesmodulatesympatheticneuronsviaagutbraincircuit AT perkinsmatthew microbesmodulatesympatheticneuronsviaagutbraincircuit AT hanwenfei microbesmodulatesympatheticneuronsviaagutbraincircuit AT raoarka microbesmodulatesympatheticneuronsviaagutbraincircuit AT picardamandaj microbesmodulatesympatheticneuronsviaagutbraincircuit AT crossjustinr microbesmodulatesympatheticneuronsviaagutbraincircuit AT hondakenya microbesmodulatesympatheticneuronsviaagutbraincircuit AT dearaujoivan microbesmodulatesympatheticneuronsviaagutbraincircuit AT mucidadaniel microbesmodulatesympatheticneuronsviaagutbraincircuit |