Cargando…
Deep representation learning of electronic health records to unlock patient stratification at scale
Deriving disease subtypes from electronic health records (EHRs) can guide next-generation personalized medicine. However, challenges in summarizing and representing patient data prevent widespread practice of scalable EHR-based stratification analysis. Here we present an unsupervised framework based...
Autores principales: | Landi, Isotta, Glicksberg, Benjamin S., Lee, Hao-Chih, Cherng, Sarah, Landi, Giulia, Danieletto, Matteo, Dudley, Joel T., Furlanello, Cesare, Miotto, Riccardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367859/ https://www.ncbi.nlm.nih.gov/pubmed/32699826 http://dx.doi.org/10.1038/s41746-020-0301-z |
Ejemplares similares
-
Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records
por: Miotto, Riccardo, et al.
Publicado: (2016) -
Reflecting health: smart mirrors for personalized medicine
por: Miotto, Riccardo, et al.
Publicado: (2018) -
Phe2vec: Automated disease phenotyping based on unsupervised embeddings from electronic health records
por: De Freitas, Jessica K., et al.
Publicado: (2021) -
Lyme Disease Patient Trajectories Learned from Electronic Medical Data for Stratification of Disease Risk and Therapeutic Response
por: Ichikawa, Osamu, et al.
Publicado: (2019) -
Identifying Acute Low Back Pain Episodes in Primary Care Practice From Clinical Notes: Observational Study
por: Miotto, Riccardo, et al.
Publicado: (2020)