Cargando…
Potential Anticancer Activity of Crude Ethanol, Ethyl Acetate, and Water Extracts of Ephedra foeminea on Human Osteosarcoma U2OS Cell Viability and Migration
Medicinal plants are potential sources for a wide range of complex compounds with probable anticancer activity. Ephedra foeminea Forssk. (E. foeminea), a medicinal plant found in the Eastern Mediterranean, has recently been gaining popularity as a cancer remedy; there is, however, a paucity of empir...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368211/ https://www.ncbi.nlm.nih.gov/pubmed/32695811 http://dx.doi.org/10.1155/2020/3837693 |
_version_ | 1783560570794934272 |
---|---|
author | Mpingirika, Eric Zadok El Hosseiny, Ahmed Bakheit, Sheri Magdy Saleeb Arafeh, Rami Amleh, Asma |
author_facet | Mpingirika, Eric Zadok El Hosseiny, Ahmed Bakheit, Sheri Magdy Saleeb Arafeh, Rami Amleh, Asma |
author_sort | Mpingirika, Eric Zadok |
collection | PubMed |
description | Medicinal plants are potential sources for a wide range of complex compounds with probable anticancer activity. Ephedra foeminea Forssk. (E. foeminea), a medicinal plant found in the Eastern Mediterranean, has recently been gaining popularity as a cancer remedy; there is, however, a paucity of empirical evidence supporting this claim. In this study, the effect of E. foeminea ethyl acetate, ethanol, and water crude extracts on viability, migratory ability, and the steady-state mRNA levels of genes involved in these processes was, respectively, examined using MTT assay, wound healing assay, and reverse transcriptase PCR (RT-PCR). The study concludes that all extracts significantly reduce human osteosarcoma U2OS percentage viability in a dose- and time-dependent manner, with varying potencies. The least half-maximal inhibitory concentration (IC(50)) was observed in the water extract after 48 h incubation (30.761 ± 1.4 μg/mL) followed by the ethyl acetate extract after 72 h incubation (80.35 ± 1.233 μg/mL) and finally the ethanol extract after 48 h incubation (97.499 ± 1.188 μg/mL). Ethanol extract significantly reduced U2OS percentage wound closure. On the other hand, both ethanol and water extracts considerably reduced the steady-state mRNA expression of beta-catenin, promoting both cell proliferation and migration in osteosarcoma by regulating target genes. Additionally, E. foeminea showed no hemolytic activity. These effects suggest that E. foeminea decreases U2OS cell viability and migratory ability by modulating the expression of critical genes involved in regulating these processes and is likely cytocompatible with human erythrocytes. |
format | Online Article Text |
id | pubmed-7368211 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-73682112020-07-20 Potential Anticancer Activity of Crude Ethanol, Ethyl Acetate, and Water Extracts of Ephedra foeminea on Human Osteosarcoma U2OS Cell Viability and Migration Mpingirika, Eric Zadok El Hosseiny, Ahmed Bakheit, Sheri Magdy Saleeb Arafeh, Rami Amleh, Asma Biomed Res Int Research Article Medicinal plants are potential sources for a wide range of complex compounds with probable anticancer activity. Ephedra foeminea Forssk. (E. foeminea), a medicinal plant found in the Eastern Mediterranean, has recently been gaining popularity as a cancer remedy; there is, however, a paucity of empirical evidence supporting this claim. In this study, the effect of E. foeminea ethyl acetate, ethanol, and water crude extracts on viability, migratory ability, and the steady-state mRNA levels of genes involved in these processes was, respectively, examined using MTT assay, wound healing assay, and reverse transcriptase PCR (RT-PCR). The study concludes that all extracts significantly reduce human osteosarcoma U2OS percentage viability in a dose- and time-dependent manner, with varying potencies. The least half-maximal inhibitory concentration (IC(50)) was observed in the water extract after 48 h incubation (30.761 ± 1.4 μg/mL) followed by the ethyl acetate extract after 72 h incubation (80.35 ± 1.233 μg/mL) and finally the ethanol extract after 48 h incubation (97.499 ± 1.188 μg/mL). Ethanol extract significantly reduced U2OS percentage wound closure. On the other hand, both ethanol and water extracts considerably reduced the steady-state mRNA expression of beta-catenin, promoting both cell proliferation and migration in osteosarcoma by regulating target genes. Additionally, E. foeminea showed no hemolytic activity. These effects suggest that E. foeminea decreases U2OS cell viability and migratory ability by modulating the expression of critical genes involved in regulating these processes and is likely cytocompatible with human erythrocytes. Hindawi 2020-07-09 /pmc/articles/PMC7368211/ /pubmed/32695811 http://dx.doi.org/10.1155/2020/3837693 Text en Copyright © 2020 Eric Zadok Mpingirika et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Mpingirika, Eric Zadok El Hosseiny, Ahmed Bakheit, Sheri Magdy Saleeb Arafeh, Rami Amleh, Asma Potential Anticancer Activity of Crude Ethanol, Ethyl Acetate, and Water Extracts of Ephedra foeminea on Human Osteosarcoma U2OS Cell Viability and Migration |
title | Potential Anticancer Activity of Crude Ethanol, Ethyl Acetate, and Water Extracts of Ephedra foeminea on Human Osteosarcoma U2OS Cell Viability and Migration |
title_full | Potential Anticancer Activity of Crude Ethanol, Ethyl Acetate, and Water Extracts of Ephedra foeminea on Human Osteosarcoma U2OS Cell Viability and Migration |
title_fullStr | Potential Anticancer Activity of Crude Ethanol, Ethyl Acetate, and Water Extracts of Ephedra foeminea on Human Osteosarcoma U2OS Cell Viability and Migration |
title_full_unstemmed | Potential Anticancer Activity of Crude Ethanol, Ethyl Acetate, and Water Extracts of Ephedra foeminea on Human Osteosarcoma U2OS Cell Viability and Migration |
title_short | Potential Anticancer Activity of Crude Ethanol, Ethyl Acetate, and Water Extracts of Ephedra foeminea on Human Osteosarcoma U2OS Cell Viability and Migration |
title_sort | potential anticancer activity of crude ethanol, ethyl acetate, and water extracts of ephedra foeminea on human osteosarcoma u2os cell viability and migration |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368211/ https://www.ncbi.nlm.nih.gov/pubmed/32695811 http://dx.doi.org/10.1155/2020/3837693 |
work_keys_str_mv | AT mpingirikaericzadok potentialanticanceractivityofcrudeethanolethylacetateandwaterextractsofephedrafoemineaonhumanosteosarcomau2oscellviabilityandmigration AT elhosseinyahmed potentialanticanceractivityofcrudeethanolethylacetateandwaterextractsofephedrafoemineaonhumanosteosarcomau2oscellviabilityandmigration AT bakheitsherimagdysaleeb potentialanticanceractivityofcrudeethanolethylacetateandwaterextractsofephedrafoemineaonhumanosteosarcomau2oscellviabilityandmigration AT arafehrami potentialanticanceractivityofcrudeethanolethylacetateandwaterextractsofephedrafoemineaonhumanosteosarcomau2oscellviabilityandmigration AT amlehasma potentialanticanceractivityofcrudeethanolethylacetateandwaterextractsofephedrafoemineaonhumanosteosarcomau2oscellviabilityandmigration |