Cargando…

Polarized evanescent waves reveal trochoidal dichroism

Matter’s sensitivity to light polarization is characterized by linear and circular polarization effects, corresponding to the system’s anisotropy and handedness, respectively. Recent investigations into the near-field properties of evanescent waves have revealed polarization states with out-of-phase...

Descripción completa

Detalles Bibliográficos
Autores principales: McCarthy, Lauren A., Smith, Kyle W., Lan, Xiang, Hosseini Jebeli, Seyyed Ali, Bursi, Luca, Alabastri, Alessandro, Chang, Wei-Shun, Nordlander, Peter, Link, Stephan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368260/
https://www.ncbi.nlm.nih.gov/pubmed/32601234
http://dx.doi.org/10.1073/pnas.2004169117
_version_ 1783560579318808576
author McCarthy, Lauren A.
Smith, Kyle W.
Lan, Xiang
Hosseini Jebeli, Seyyed Ali
Bursi, Luca
Alabastri, Alessandro
Chang, Wei-Shun
Nordlander, Peter
Link, Stephan
author_facet McCarthy, Lauren A.
Smith, Kyle W.
Lan, Xiang
Hosseini Jebeli, Seyyed Ali
Bursi, Luca
Alabastri, Alessandro
Chang, Wei-Shun
Nordlander, Peter
Link, Stephan
author_sort McCarthy, Lauren A.
collection PubMed
description Matter’s sensitivity to light polarization is characterized by linear and circular polarization effects, corresponding to the system’s anisotropy and handedness, respectively. Recent investigations into the near-field properties of evanescent waves have revealed polarization states with out-of-phase transverse and longitudinal oscillations, resulting in trochoidal, or cartwheeling, field motion. Here, we demonstrate matter’s inherent sensitivity to the direction of the trochoidal field and name this property trochoidal dichroism. We observe trochoidal dichroism in the differential excitation of bonding and antibonding plasmon modes for a system composed of two coupled dipole scatterers. Trochoidal dichroism constitutes the observation of a geometric basis for polarization sensitivity that fundamentally differs from linear and circular dichroism. It could also be used to characterize molecular systems, such as certain light-harvesting antennas, with cartwheeling charge motion upon excitation.
format Online
Article
Text
id pubmed-7368260
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-73682602020-07-29 Polarized evanescent waves reveal trochoidal dichroism McCarthy, Lauren A. Smith, Kyle W. Lan, Xiang Hosseini Jebeli, Seyyed Ali Bursi, Luca Alabastri, Alessandro Chang, Wei-Shun Nordlander, Peter Link, Stephan Proc Natl Acad Sci U S A Physical Sciences Matter’s sensitivity to light polarization is characterized by linear and circular polarization effects, corresponding to the system’s anisotropy and handedness, respectively. Recent investigations into the near-field properties of evanescent waves have revealed polarization states with out-of-phase transverse and longitudinal oscillations, resulting in trochoidal, or cartwheeling, field motion. Here, we demonstrate matter’s inherent sensitivity to the direction of the trochoidal field and name this property trochoidal dichroism. We observe trochoidal dichroism in the differential excitation of bonding and antibonding plasmon modes for a system composed of two coupled dipole scatterers. Trochoidal dichroism constitutes the observation of a geometric basis for polarization sensitivity that fundamentally differs from linear and circular dichroism. It could also be used to characterize molecular systems, such as certain light-harvesting antennas, with cartwheeling charge motion upon excitation. National Academy of Sciences 2020-07-14 2020-06-29 /pmc/articles/PMC7368260/ /pubmed/32601234 http://dx.doi.org/10.1073/pnas.2004169117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
McCarthy, Lauren A.
Smith, Kyle W.
Lan, Xiang
Hosseini Jebeli, Seyyed Ali
Bursi, Luca
Alabastri, Alessandro
Chang, Wei-Shun
Nordlander, Peter
Link, Stephan
Polarized evanescent waves reveal trochoidal dichroism
title Polarized evanescent waves reveal trochoidal dichroism
title_full Polarized evanescent waves reveal trochoidal dichroism
title_fullStr Polarized evanescent waves reveal trochoidal dichroism
title_full_unstemmed Polarized evanescent waves reveal trochoidal dichroism
title_short Polarized evanescent waves reveal trochoidal dichroism
title_sort polarized evanescent waves reveal trochoidal dichroism
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368260/
https://www.ncbi.nlm.nih.gov/pubmed/32601234
http://dx.doi.org/10.1073/pnas.2004169117
work_keys_str_mv AT mccarthylaurena polarizedevanescentwavesrevealtrochoidaldichroism
AT smithkylew polarizedevanescentwavesrevealtrochoidaldichroism
AT lanxiang polarizedevanescentwavesrevealtrochoidaldichroism
AT hosseinijebeliseyyedali polarizedevanescentwavesrevealtrochoidaldichroism
AT bursiluca polarizedevanescentwavesrevealtrochoidaldichroism
AT alabastrialessandro polarizedevanescentwavesrevealtrochoidaldichroism
AT changweishun polarizedevanescentwavesrevealtrochoidaldichroism
AT nordlanderpeter polarizedevanescentwavesrevealtrochoidaldichroism
AT linkstephan polarizedevanescentwavesrevealtrochoidaldichroism