Cargando…

Artificial intelligence-based classification of schizophrenia: A high density electroencephalographic and support vector machine study

BACKGROUND: Interview-based schizophrenia (SCZ) diagnostic methods are not completely valid. Moreover, SCZ-the disease entity is very heterogeneous. Supervised-Machine-Learning (sML) application of Artificial-Intelligence holds a tremendous promise in solving these issues. AIMS: To sML-based discrim...

Descripción completa

Detalles Bibliográficos
Autores principales: Tikka, Sai Krishna, Singh, Bikesh Kumar, Nizamie, S. Haque, Garg, Shobit, Mandal, Sunandan, Thakur, Kavita, Singh, Lokesh Kumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368447/
https://www.ncbi.nlm.nih.gov/pubmed/32773870
http://dx.doi.org/10.4103/psychiatry.IndianJPsychiatry_91_20
Descripción
Sumario:BACKGROUND: Interview-based schizophrenia (SCZ) diagnostic methods are not completely valid. Moreover, SCZ-the disease entity is very heterogeneous. Supervised-Machine-Learning (sML) application of Artificial-Intelligence holds a tremendous promise in solving these issues. AIMS: To sML-based discriminating validity of resting-state electroencephalographic (EEG) quantitative features in classifying SCZ from healthy and, positive (PS) and negative symptom (NS) subgroups, using a high-density recording. SETTINGS AND DESIGN: Data collected at a tertiary care mental-health institute using a cross-sectional study design and analyzed at a premier Engineering Institute. MATERIALS AND METHODS: Data of 38-SCZ patients and 20-healthy controls were retrieved. The positive-negative subgroup classification was done using Positive and Negative Syndrome Scale operational-criteria. EEG was recorded using 256-channel high-density equipment. Eight priori regions-of-interest were selected. Six-level wavelet decomposition and Kernel-Support Vector Machine (SVM) method were used for feature extraction and data classification. STATISTICAL ANALYSIS: Mann–Whitney test was used for comparison of machine learning-features. Accuracy, sensitivity, specificity, and area under receiver operating characteristics-curve were measured as discriminatory indices of classifications. RESULTS: Accuracy of classifying SCZ from healthy and PS from NS SCZ, were 78.95% and 89.29%, respectively. While beta and gamma frequency related features most accurately classified SCZ from healthy controls, delta and theta frequency related features most accurately classified positive from negative SCZ. Inferior frontal gyrus features most accurately contributed to both the classificatory instances. CONCLUSIONS: SVM-based classification and sub-classification of SCZ using EEG data is optimal and might help in improving the “validity” and reducing the “heterogeneity” in the diagnosis of SCZ. These results might only be generalized to acute and moderately ill male SCZ patients.