Cargando…
Artificial intelligence-based classification of schizophrenia: A high density electroencephalographic and support vector machine study
BACKGROUND: Interview-based schizophrenia (SCZ) diagnostic methods are not completely valid. Moreover, SCZ-the disease entity is very heterogeneous. Supervised-Machine-Learning (sML) application of Artificial-Intelligence holds a tremendous promise in solving these issues. AIMS: To sML-based discrim...
Autores principales: | Tikka, Sai Krishna, Singh, Bikesh Kumar, Nizamie, S. Haque, Garg, Shobit, Mandal, Sunandan, Thakur, Kavita, Singh, Lokesh Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368447/ https://www.ncbi.nlm.nih.gov/pubmed/32773870 http://dx.doi.org/10.4103/psychiatry.IndianJPsychiatry_91_20 |
Ejemplares similares
-
MARFATIA AWARD
Publicado: (2018) -
MARFATIA AWARDS
Publicado: (2020) -
MARFATIA AWARD
Publicado: (2023) -
Near zero treatment gap for schizophrenia: Can it be reality in rural India?
por: Kumar, Channaveerachari Naveen, et al.
Publicado: (2022) -
An Indian experience of neurocognitive endophenotypic markers in unaffected first-degree relatives of schizophrenia patients
por: Solanki, Ram Kumar, et al.
Publicado: (2016)