Cargando…
From community-acquired pneumonia to COVID-19: a deep learning–based method for quantitative analysis of COVID-19 on thick-section CT scans
OBJECTIVE: To develop a fully automated AI system to quantitatively assess the disease severity and disease progression of COVID-19 using thick-section chest CT images. METHODS: In this retrospective study, an AI system was developed to automatically segment and quantify the COVID-19-infected lung r...
Autores principales: | Li, Zhang, Zhong, Zheng, Li, Yang, Zhang, Tianyu, Gao, Liangxin, Jin, Dakai, Sun, Yue, Ye, Xianghua, Yu, Li, Hu, Zheyu, Xiao, Jing, Huang, Lingyun, Tang, Yuling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368602/ https://www.ncbi.nlm.nih.gov/pubmed/32683550 http://dx.doi.org/10.1007/s00330-020-07042-x |
Ejemplares similares
-
AI detection of mild COVID-19 pneumonia from chest CT scans
por: Yao, Jin-Cao, et al.
Publicado: (2021) -
Evolution of CT findings in patients with mild COVID-19 pneumonia
por: Liang, Ting, et al.
Publicado: (2020) -
CT features of novel coronavirus pneumonia (COVID-19) in children
por: Duan, Ya-ni, et al.
Publicado: (2020) -
Imaging features and evolution on CT in 100 COVID-19 pneumonia patients in Wuhan, China
por: Zhou, Shuchang, et al.
Publicado: (2020) -
COVID-19 pneumonia: CT findings of 122 patients and differentiation from influenza pneumonia
por: Liu, Mengqi, et al.
Publicado: (2020)