Cargando…

Rapid Detection of Kaempferol Using Surface Molecularly Imprinted Mesoporous Molecular Sieves Embedded with Carbon Dots

This work demonstrates rapid sensing of kaempferol using active sensing material synthesized using the one-pot surface-imprinting synthesis method. This sensor consisted of molecularly imprinted polymer (MIP) consisting of mesoporous molecular sieves (SBA-15) loaded with carbon dots (CDs). Fourier t...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Yu, Wang, Junping, Wang, Shuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368943/
https://www.ncbi.nlm.nih.gov/pubmed/32695172
http://dx.doi.org/10.1155/2020/5819062
Descripción
Sumario:This work demonstrates rapid sensing of kaempferol using active sensing material synthesized using the one-pot surface-imprinting synthesis method. This sensor consisted of molecularly imprinted polymer (MIP) consisting of mesoporous molecular sieves (SBA-15) loaded with carbon dots (CDs). Fourier transform infrared (FT-IR) spectroscopy confirmed successful incorporation of CDs onto the surface of imprinted mesoporous molecular sieves. Ordered hexagonal arrays of CDs@SBA-15@MIP mesopore structure were confirmed with transmission electron microscopy. Fluorescence intensity of CDs@SBA-15@MIP composites linearly correlated with kaempferol content in the 0.05–2 mg/L range. Detection limit was 14 μg/L. MIPs were used for efficient detection of kaempferol in fruit and vegetable samples with recovery values from 80% to 112%. The method has high sensitivity, low cost, good selectivity, and many application potentials useful for research and development of flavonoid monomer presence in food.