Cargando…

Development of a flickering action video based steady state visual evoked potential triggered brain computer interface-functional electrical stimulation for a rehabilitative action observation game

BACKGROUND: This study focused on developing an upper limb rehabilitation program. In this regard, a steady state visual evoked potential (SSVEP) triggered brain computer interface (BCI)-functional electrical stimulation (FES) based action observation game featuring a flickering action video was des...

Descripción completa

Detalles Bibliográficos
Autores principales: Son, Ji Eun, Choi, Hyoseon, Lim, Hyunmi, Ku, Jeonghun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOS Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369077/
https://www.ncbi.nlm.nih.gov/pubmed/32364183
http://dx.doi.org/10.3233/THC-209051
Descripción
Sumario:BACKGROUND: This study focused on developing an upper limb rehabilitation program. In this regard, a steady state visual evoked potential (SSVEP) triggered brain computer interface (BCI)-functional electrical stimulation (FES) based action observation game featuring a flickering action video was designed. OBJECTIVE: In particular, the synergetic effect of the game was investigated by combining the action observation paradigm with BCI based FES. METHODS: The BCI-FES system was contrasted under two conditions: with flickering action video and flickering noise video. In this regard, 11 right-handed subjects aged between 22–27 years were recruited. The differences in brain activation in response to the two conditions were examined. RESULTS: The results indicate that T3 and P3 channels exhibited greater Mu suppression in 8–13 Hz for the action video than the noise video. Furthermore, T4, C4, and P4 channels indicated augmented high beta (21–30 Hz) for the action in contrast to the noise video. Finally, T4 indicated suppressed low beta (14–20 Hz) for the action video in contrast to the noise video. CONCLUSION: The flickering action video based BCI-FES system induced a more synergetic effect on cortical activation than the flickering noise based system.