Cargando…
Predictive models of hypertensive disorders in pregnancy based on support vector machine algorithm
BACKGROUND: The risk factors of hypertensive disorders in pregnancy (HDP) could be summarized into three categories: clinical epidemiological factors, hemodynamic factors and biochemical factors. OBJECTIVE: To establish models for early prediction and intervention of HDP. METHODS: This study used th...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369093/ https://www.ncbi.nlm.nih.gov/pubmed/32364150 http://dx.doi.org/10.3233/THC-209018 |
Sumario: | BACKGROUND: The risk factors of hypertensive disorders in pregnancy (HDP) could be summarized into three categories: clinical epidemiological factors, hemodynamic factors and biochemical factors. OBJECTIVE: To establish models for early prediction and intervention of HDP. METHODS: This study used the three types of risk factors and support vector machine (SVM) to establish prediction models of HDP at different gestational weeks. RESULTS: The average accuracy of the model was gradually increased when the pregnancy progressed, especially in the late pregnancy 28–34 weeks and [Formula: see text] 35 weeks, it reached more than 92%. CONCLUSION: Multi-risk factors combined with dynamic gestational weeks’ prediction of HDP based on machine learning was superior to static and single-class conventional prediction methods. Multiple continuous tests could be performed from early pregnancy to late pregnancy. |
---|