Cargando…
Development and Validation of a Prognostic Nomogram Based on Clinical and CT Features for Adverse Outcome Prediction in Patients with COVID-19
OBJECTIVE: The purpose of our study was to investigate the predictive abilities of clinical and computed tomography (CT) features for outcome prediction in patients with coronavirus disease (COVID-19). MATERIALS AND METHODS: The clinical and CT data of 238 patients with laboratory-confirmed COVID-19...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369204/ https://www.ncbi.nlm.nih.gov/pubmed/32677385 http://dx.doi.org/10.3348/kjr.2020.0485 |
Sumario: | OBJECTIVE: The purpose of our study was to investigate the predictive abilities of clinical and computed tomography (CT) features for outcome prediction in patients with coronavirus disease (COVID-19). MATERIALS AND METHODS: The clinical and CT data of 238 patients with laboratory-confirmed COVID-19 in our two hospitals were retrospectively analyzed. One hundred sixty-six patients (103 males; age 43.8 ± 12.3 years) were allocated in the training cohort and 72 patients (38 males; age 45.1 ± 15.8 years) from another independent hospital were assigned in the validation cohort. The primary composite endpoint was admission to an intensive care unit, use of mechanical ventilation, or death. Univariate and multivariate Cox proportional hazard analyses were performed to identify independent predictors. A nomogram was constructed based on the combination of clinical and CT features, and its prognostic performance was externally tested in the validation group. The predictive value of the combined model was compared with models built on the clinical and radiological attributes alone. RESULTS: Overall, 35 infected patients (21.1%) in the training cohort and 10 patients (13.9%) in the validation cohort experienced adverse outcomes. Underlying comorbidity (hazard ratio [HR], 3.35; 95% confidence interval [CI], 1.67–6.71; p < 0.001), lymphocyte count (HR, 0.12; 95% CI, 0.04–0.38; p < 0.001) and crazy-paving sign (HR, 2.15; 95% CI, 1.03–4.48; p = 0.042) were the independent factors. The nomogram displayed a concordance index (C-index) of 0.82 (95% CI, 0.76–0.88), and its prognostic value was confirmed in the validation cohort with a C-index of 0.89 (95% CI, 0.82–0.96). The combined model provided the best performance over the clinical or radiological model (p < 0.050). CONCLUSION: Underlying comorbidity, lymphocyte count and crazy-paving sign were independent predictors of adverse outcomes. The prognostic nomogram based on the combination of clinical and CT features could be a useful tool for predicting adverse outcomes of patients with COVID-19. |
---|