Cargando…

Size-Dependent Cytotoxicity of Hydroxyapatite Crystals on Renal Epithelial Cells

BACKGROUND: Hydroxyapatite (HAP) is a common component of most idiopathic calcium oxalate (CaOx) stones and is often used as a nidus to induce the formation of CaOx kidney stones. METHODS: This work comparatively studies the cytotoxicity of four kinds of HAP crystals with different sizes (40 nm to 2...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Xin-Yuan, Chen, Jia-Yun, Rao, Chen-Ying, Ouyang, Jian-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369374/
https://www.ncbi.nlm.nih.gov/pubmed/32764935
http://dx.doi.org/10.2147/IJN.S232926
Descripción
Sumario:BACKGROUND: Hydroxyapatite (HAP) is a common component of most idiopathic calcium oxalate (CaOx) stones and is often used as a nidus to induce the formation of CaOx kidney stones. METHODS: This work comparatively studies the cytotoxicity of four kinds of HAP crystals with different sizes (40 nm to 2 μm), namely, HAP-40 nm, HAP-70 nm, HAP-1 μm, and HAP-2 μm, on human renal proximal tubular epithelial cells (HK-2). RESULTS: HAP crystals reduce the viability and membrane integrity of HK-2 cells in a concentration-dependent manner and consequently cause cytoskeleton damage, cell swelling, increased intracellular reactive oxygen species level, decreased mitochondrial membrane potential, increased intracellular calcium concentration, blocked cell cycle and stagnation in G0/G1 phase, and increased cell necrosis rate. HAP toxicity to HK-2 cells increases with a decrease in crystal size. CONCLUSION: Cell damage caused by HAP crystals increases the risk of kidney stone formation.