Cargando…
Machine learning‐based cognitive impairment classification with optimal combination of neuropsychological tests
INTRODUCTION: An extensive battery of neuropsychological tests is currently used to classify individuals as healthy (HV), mild cognitively impaired (MCI), and with Alzheimer's disease (AD). We used machine learning models for effective cognitive impairment classification and optimized the numbe...
Autores principales: | Gupta, Abhay, Kahali, Bratati |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369403/ https://www.ncbi.nlm.nih.gov/pubmed/32699817 http://dx.doi.org/10.1002/trc2.12049 |
Ejemplares similares
-
Optimizing Neuropsychological Assessments for Cognitive, Behavioral, and Functional Impairment Classification: A Machine Learning Study
por: Battista, Petronilla, et al.
Publicado: (2017) -
Neuropsychological Testing and Machine Learning Distinguish Alzheimer’s Disease from Other Causes for Cognitive Impairment
por: Gurevich, Pavel, et al.
Publicado: (2017) -
Exome-wide analysis reveals role of LRP1 and additional novel loci in cognition
por: Chakraborty, Shreya, et al.
Publicado: (2023) -
Dual Semi-Supervised Learning for Classification of Alzheimer’s Disease and Mild Cognitive Impairment Based on Neuropsychological Data
por: Wang, Yan, et al.
Publicado: (2023) -
Machine Learning Decomposition of the Anatomy of Neuropsychological Deficit in Alzheimer’s Disease and Mild Cognitive Impairment
por: Dong, Ningxin, et al.
Publicado: (2022)