Cargando…
An inhalation anaesthesia approach for neonatal mice allowing streamlined stereotactic injection in the brain
BACKGROUND: Investigating brain function requires tools and techniques to visualise, modify and manipulate neuronal tissue. One powerful and popular method is intracerebral injection of customised viruses, allowing expression of exogenous transgenes. This technique is a standard procedure for adult...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier/North-Holland Biomedical Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369625/ https://www.ncbi.nlm.nih.gov/pubmed/32569783 http://dx.doi.org/10.1016/j.jneumeth.2020.108824 |
_version_ | 1783560812345950208 |
---|---|
author | Ho, Hinze Fowle, Adam Coetzee, Marisa Greger, Ingo H. Watson, Jake F. |
author_facet | Ho, Hinze Fowle, Adam Coetzee, Marisa Greger, Ingo H. Watson, Jake F. |
author_sort | Ho, Hinze |
collection | PubMed |
description | BACKGROUND: Investigating brain function requires tools and techniques to visualise, modify and manipulate neuronal tissue. One powerful and popular method is intracerebral injection of customised viruses, allowing expression of exogenous transgenes. This technique is a standard procedure for adult mice, and is used by laboratories worldwide. Use of neonatal animals in scientific research allows investigation of developing tissues and enables long-term study of cell populations. However, procedures on neonatal mice are more challenging, due to the lack of reliable methods and apparatus for anaesthesia of these animals. NEW METHOD: Here, we report an inhalation-based protocol for anaesthesia of neonatal (P0−2) mice and present a custom 3D-printed apparatus for maintenance of anaesthesia during surgical procedures. Our optimised method of anaesthesia enables a rapid method of stereotactic injection in neonatal mice for transduction of brain tissue. RESULTS AND COMPARISON WITH EXISTING METHODS: This approach significantly enhances animal welfare and facilitates wider and simpler use of neonatal rodents in scientific research. We demonstrate this procedure for targeted labelling of specific brain regions, and in vivo modification of tissue prior to organotypic culture. CONCLUSIONS: Our protocol for reliable delivery of inhalational anaesthetics can be readily adopted by any laboratory and will enable safer use of neonatal rodents across a diverse spectrum of scientific disciplines. Application to stereotactic injections allows a rapid and efficient method for modification of brain tissue. |
format | Online Article Text |
id | pubmed-7369625 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier/North-Holland Biomedical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-73696252020-08-01 An inhalation anaesthesia approach for neonatal mice allowing streamlined stereotactic injection in the brain Ho, Hinze Fowle, Adam Coetzee, Marisa Greger, Ingo H. Watson, Jake F. J Neurosci Methods Article BACKGROUND: Investigating brain function requires tools and techniques to visualise, modify and manipulate neuronal tissue. One powerful and popular method is intracerebral injection of customised viruses, allowing expression of exogenous transgenes. This technique is a standard procedure for adult mice, and is used by laboratories worldwide. Use of neonatal animals in scientific research allows investigation of developing tissues and enables long-term study of cell populations. However, procedures on neonatal mice are more challenging, due to the lack of reliable methods and apparatus for anaesthesia of these animals. NEW METHOD: Here, we report an inhalation-based protocol for anaesthesia of neonatal (P0−2) mice and present a custom 3D-printed apparatus for maintenance of anaesthesia during surgical procedures. Our optimised method of anaesthesia enables a rapid method of stereotactic injection in neonatal mice for transduction of brain tissue. RESULTS AND COMPARISON WITH EXISTING METHODS: This approach significantly enhances animal welfare and facilitates wider and simpler use of neonatal rodents in scientific research. We demonstrate this procedure for targeted labelling of specific brain regions, and in vivo modification of tissue prior to organotypic culture. CONCLUSIONS: Our protocol for reliable delivery of inhalational anaesthetics can be readily adopted by any laboratory and will enable safer use of neonatal rodents across a diverse spectrum of scientific disciplines. Application to stereotactic injections allows a rapid and efficient method for modification of brain tissue. Elsevier/North-Holland Biomedical Press 2020-08-01 /pmc/articles/PMC7369625/ /pubmed/32569783 http://dx.doi.org/10.1016/j.jneumeth.2020.108824 Text en © 2020 MRC Laboratory of Molecular Biology http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ho, Hinze Fowle, Adam Coetzee, Marisa Greger, Ingo H. Watson, Jake F. An inhalation anaesthesia approach for neonatal mice allowing streamlined stereotactic injection in the brain |
title | An inhalation anaesthesia approach for neonatal mice allowing streamlined stereotactic injection in the brain |
title_full | An inhalation anaesthesia approach for neonatal mice allowing streamlined stereotactic injection in the brain |
title_fullStr | An inhalation anaesthesia approach for neonatal mice allowing streamlined stereotactic injection in the brain |
title_full_unstemmed | An inhalation anaesthesia approach for neonatal mice allowing streamlined stereotactic injection in the brain |
title_short | An inhalation anaesthesia approach for neonatal mice allowing streamlined stereotactic injection in the brain |
title_sort | inhalation anaesthesia approach for neonatal mice allowing streamlined stereotactic injection in the brain |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369625/ https://www.ncbi.nlm.nih.gov/pubmed/32569783 http://dx.doi.org/10.1016/j.jneumeth.2020.108824 |
work_keys_str_mv | AT hohinze aninhalationanaesthesiaapproachforneonatalmiceallowingstreamlinedstereotacticinjectioninthebrain AT fowleadam aninhalationanaesthesiaapproachforneonatalmiceallowingstreamlinedstereotacticinjectioninthebrain AT coetzeemarisa aninhalationanaesthesiaapproachforneonatalmiceallowingstreamlinedstereotacticinjectioninthebrain AT gregeringoh aninhalationanaesthesiaapproachforneonatalmiceallowingstreamlinedstereotacticinjectioninthebrain AT watsonjakef aninhalationanaesthesiaapproachforneonatalmiceallowingstreamlinedstereotacticinjectioninthebrain AT hohinze inhalationanaesthesiaapproachforneonatalmiceallowingstreamlinedstereotacticinjectioninthebrain AT fowleadam inhalationanaesthesiaapproachforneonatalmiceallowingstreamlinedstereotacticinjectioninthebrain AT coetzeemarisa inhalationanaesthesiaapproachforneonatalmiceallowingstreamlinedstereotacticinjectioninthebrain AT gregeringoh inhalationanaesthesiaapproachforneonatalmiceallowingstreamlinedstereotacticinjectioninthebrain AT watsonjakef inhalationanaesthesiaapproachforneonatalmiceallowingstreamlinedstereotacticinjectioninthebrain |