Cargando…

Cross-Modal Search for Social Networks via Adversarial Learning

Cross-modal search has become a research hotspot in the recent years. In contrast to traditional cross-modal search, social network cross-modal information search is restricted by data quality for arbitrary text and low-resolution visual features. In addition, the semantic sparseness of cross-modal...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Nan, Du, Junping, Xue, Zhe, Liu, Chong, Li, Jinxuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369674/
https://www.ncbi.nlm.nih.gov/pubmed/32733547
http://dx.doi.org/10.1155/2020/7834953
Descripción
Sumario:Cross-modal search has become a research hotspot in the recent years. In contrast to traditional cross-modal search, social network cross-modal information search is restricted by data quality for arbitrary text and low-resolution visual features. In addition, the semantic sparseness of cross-modal data from social networks results in the text and visual modalities misleading each other. In this paper, we propose a cross-modal search method for social network data that capitalizes on adversarial learning (cross-modal search with adversarial learning: CMSAL). We adopt self-attention-based neural networks to generate modality-oriented representations for further intermodal correlation learning. A search module is implemented based on adversarial learning, through which the discriminator is designed to measure the distribution of generated features from intramodal and intramodal perspectives. Experiments on real-word datasets from Sina Weibo and Wikipedia, which have similar properties to social networks, show that the proposed method outperforms the state-of-the-art cross-modal search methods.