Cargando…
Role of Extracellular Matrix in Pathophysiology of Patent Ductus Arteriosus: Emphasis on Vascular Remodeling
The ductus arteriosus (DA) is a shunt vessel between the aorta and the pulmonary artery during the fetal period that is essential for the normal development of the fetus. Complete closure usually occurs after birth but the vessel might remain open in certain infants, as patent ductus arteriosus (PDA...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369762/ https://www.ncbi.nlm.nih.gov/pubmed/32635482 http://dx.doi.org/10.3390/ijms21134761 |
_version_ | 1783560842949689344 |
---|---|
author | Lin, Ting-Yi Yeh, Jwu-Lai Hsu, Jong-Hau |
author_facet | Lin, Ting-Yi Yeh, Jwu-Lai Hsu, Jong-Hau |
author_sort | Lin, Ting-Yi |
collection | PubMed |
description | The ductus arteriosus (DA) is a shunt vessel between the aorta and the pulmonary artery during the fetal period that is essential for the normal development of the fetus. Complete closure usually occurs after birth but the vessel might remain open in certain infants, as patent ductus arteriosus (PDA), causing morbidity or mortality. The mechanism of DA closure is a complex process involving an orchestration of cell–matrix interaction between smooth muscle cells (SMC), endothelial cells, and extracellular matrix (ECM). ECM is defined as the noncellular component secreted by cells that consists of macromolecules such as elastin, collagens, proteoglycan, hyaluronan, and noncollagenous glycoproteins. In addition to its role as a physical scaffold, ECM mediates diverse signaling that is critical in development, maintenance, and repair in the cardiovascular system. In this review, we aim to outline the current understandings of ECM and its role in the pathophysiology of PDA, with emphasis on DA remodeling and highlight future outlooks. The molecular diversity and plasticity of ECM present a rich array of potential therapeutic targets for the management of PDA. |
format | Online Article Text |
id | pubmed-7369762 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73697622020-07-21 Role of Extracellular Matrix in Pathophysiology of Patent Ductus Arteriosus: Emphasis on Vascular Remodeling Lin, Ting-Yi Yeh, Jwu-Lai Hsu, Jong-Hau Int J Mol Sci Review The ductus arteriosus (DA) is a shunt vessel between the aorta and the pulmonary artery during the fetal period that is essential for the normal development of the fetus. Complete closure usually occurs after birth but the vessel might remain open in certain infants, as patent ductus arteriosus (PDA), causing morbidity or mortality. The mechanism of DA closure is a complex process involving an orchestration of cell–matrix interaction between smooth muscle cells (SMC), endothelial cells, and extracellular matrix (ECM). ECM is defined as the noncellular component secreted by cells that consists of macromolecules such as elastin, collagens, proteoglycan, hyaluronan, and noncollagenous glycoproteins. In addition to its role as a physical scaffold, ECM mediates diverse signaling that is critical in development, maintenance, and repair in the cardiovascular system. In this review, we aim to outline the current understandings of ECM and its role in the pathophysiology of PDA, with emphasis on DA remodeling and highlight future outlooks. The molecular diversity and plasticity of ECM present a rich array of potential therapeutic targets for the management of PDA. MDPI 2020-07-04 /pmc/articles/PMC7369762/ /pubmed/32635482 http://dx.doi.org/10.3390/ijms21134761 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Lin, Ting-Yi Yeh, Jwu-Lai Hsu, Jong-Hau Role of Extracellular Matrix in Pathophysiology of Patent Ductus Arteriosus: Emphasis on Vascular Remodeling |
title | Role of Extracellular Matrix in Pathophysiology of Patent Ductus Arteriosus: Emphasis on Vascular Remodeling |
title_full | Role of Extracellular Matrix in Pathophysiology of Patent Ductus Arteriosus: Emphasis on Vascular Remodeling |
title_fullStr | Role of Extracellular Matrix in Pathophysiology of Patent Ductus Arteriosus: Emphasis on Vascular Remodeling |
title_full_unstemmed | Role of Extracellular Matrix in Pathophysiology of Patent Ductus Arteriosus: Emphasis on Vascular Remodeling |
title_short | Role of Extracellular Matrix in Pathophysiology of Patent Ductus Arteriosus: Emphasis on Vascular Remodeling |
title_sort | role of extracellular matrix in pathophysiology of patent ductus arteriosus: emphasis on vascular remodeling |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369762/ https://www.ncbi.nlm.nih.gov/pubmed/32635482 http://dx.doi.org/10.3390/ijms21134761 |
work_keys_str_mv | AT lintingyi roleofextracellularmatrixinpathophysiologyofpatentductusarteriosusemphasisonvascularremodeling AT yehjwulai roleofextracellularmatrixinpathophysiologyofpatentductusarteriosusemphasisonvascularremodeling AT hsujonghau roleofextracellularmatrixinpathophysiologyofpatentductusarteriosusemphasisonvascularremodeling |