Cargando…
Ethylene Is Not Essential for R-Gene Mediated Resistance but Negatively Regulates Moderate Resistance to Some Aphids in Medicago truncatula
Ethylene is important for plant responses to environmental factors. However, little is known about its role in aphid resistance. Several types of genetic resistance against multiple aphid species, including both moderate and strong resistance mediated by R genes, have been identified in Medicago tru...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369913/ https://www.ncbi.nlm.nih.gov/pubmed/32629952 http://dx.doi.org/10.3390/ijms21134657 |
_version_ | 1783560878630633472 |
---|---|
author | Zhang, Lijun Kamphuis, Lars G. Guo, Yanqiong Jacques, Silke Singh, Karam B. Gao, Ling-Ling |
author_facet | Zhang, Lijun Kamphuis, Lars G. Guo, Yanqiong Jacques, Silke Singh, Karam B. Gao, Ling-Ling |
author_sort | Zhang, Lijun |
collection | PubMed |
description | Ethylene is important for plant responses to environmental factors. However, little is known about its role in aphid resistance. Several types of genetic resistance against multiple aphid species, including both moderate and strong resistance mediated by R genes, have been identified in Medicago truncatula. To investigate the potential role of ethylene, a M. truncatula ethylene- insensitive mutant, sickle, was analysed. The sickle mutant occurs in the accession A17 that has moderate resistance to Acyrthosiphon kondoi, A. pisum and Therioaphis trifolii. The sickle mutant resulted in increased antibiosis-mediated resistance against A. kondoi and T. trifolii but had no effect on A. pisum. When sickle was introduced into a genetic background carrying resistance genes, AKR (A. kondoi resistance), APR (A. pisum resistance) and TTR (T. trifolii resistance), it had no effect on the strong aphid resistance mediated by these genes, suggesting that ethylene signaling is not essential for their function. Interestingly, for the moderate aphid resistant accession, the sickle mutant delayed leaf senescence following aphid infestation and reduced the plant biomass losses caused by both A. kondoi and T. trifolii. These results suggest manipulation of the ethylene signaling pathway could provide aphid resistance and enhance plant tolerance against aphid feeding. |
format | Online Article Text |
id | pubmed-7369913 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73699132020-07-21 Ethylene Is Not Essential for R-Gene Mediated Resistance but Negatively Regulates Moderate Resistance to Some Aphids in Medicago truncatula Zhang, Lijun Kamphuis, Lars G. Guo, Yanqiong Jacques, Silke Singh, Karam B. Gao, Ling-Ling Int J Mol Sci Article Ethylene is important for plant responses to environmental factors. However, little is known about its role in aphid resistance. Several types of genetic resistance against multiple aphid species, including both moderate and strong resistance mediated by R genes, have been identified in Medicago truncatula. To investigate the potential role of ethylene, a M. truncatula ethylene- insensitive mutant, sickle, was analysed. The sickle mutant occurs in the accession A17 that has moderate resistance to Acyrthosiphon kondoi, A. pisum and Therioaphis trifolii. The sickle mutant resulted in increased antibiosis-mediated resistance against A. kondoi and T. trifolii but had no effect on A. pisum. When sickle was introduced into a genetic background carrying resistance genes, AKR (A. kondoi resistance), APR (A. pisum resistance) and TTR (T. trifolii resistance), it had no effect on the strong aphid resistance mediated by these genes, suggesting that ethylene signaling is not essential for their function. Interestingly, for the moderate aphid resistant accession, the sickle mutant delayed leaf senescence following aphid infestation and reduced the plant biomass losses caused by both A. kondoi and T. trifolii. These results suggest manipulation of the ethylene signaling pathway could provide aphid resistance and enhance plant tolerance against aphid feeding. MDPI 2020-06-30 /pmc/articles/PMC7369913/ /pubmed/32629952 http://dx.doi.org/10.3390/ijms21134657 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Lijun Kamphuis, Lars G. Guo, Yanqiong Jacques, Silke Singh, Karam B. Gao, Ling-Ling Ethylene Is Not Essential for R-Gene Mediated Resistance but Negatively Regulates Moderate Resistance to Some Aphids in Medicago truncatula |
title | Ethylene Is Not Essential for R-Gene Mediated Resistance but Negatively Regulates Moderate Resistance to Some Aphids in Medicago truncatula |
title_full | Ethylene Is Not Essential for R-Gene Mediated Resistance but Negatively Regulates Moderate Resistance to Some Aphids in Medicago truncatula |
title_fullStr | Ethylene Is Not Essential for R-Gene Mediated Resistance but Negatively Regulates Moderate Resistance to Some Aphids in Medicago truncatula |
title_full_unstemmed | Ethylene Is Not Essential for R-Gene Mediated Resistance but Negatively Regulates Moderate Resistance to Some Aphids in Medicago truncatula |
title_short | Ethylene Is Not Essential for R-Gene Mediated Resistance but Negatively Regulates Moderate Resistance to Some Aphids in Medicago truncatula |
title_sort | ethylene is not essential for r-gene mediated resistance but negatively regulates moderate resistance to some aphids in medicago truncatula |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369913/ https://www.ncbi.nlm.nih.gov/pubmed/32629952 http://dx.doi.org/10.3390/ijms21134657 |
work_keys_str_mv | AT zhanglijun ethyleneisnotessentialforrgenemediatedresistancebutnegativelyregulatesmoderateresistancetosomeaphidsinmedicagotruncatula AT kamphuislarsg ethyleneisnotessentialforrgenemediatedresistancebutnegativelyregulatesmoderateresistancetosomeaphidsinmedicagotruncatula AT guoyanqiong ethyleneisnotessentialforrgenemediatedresistancebutnegativelyregulatesmoderateresistancetosomeaphidsinmedicagotruncatula AT jacquessilke ethyleneisnotessentialforrgenemediatedresistancebutnegativelyregulatesmoderateresistancetosomeaphidsinmedicagotruncatula AT singhkaramb ethyleneisnotessentialforrgenemediatedresistancebutnegativelyregulatesmoderateresistancetosomeaphidsinmedicagotruncatula AT gaolingling ethyleneisnotessentialforrgenemediatedresistancebutnegativelyregulatesmoderateresistancetosomeaphidsinmedicagotruncatula |