Cargando…

Untangling the effects of cellular composition on coexpression analysis

Coexpression analysis is widely used for inferring regulatory networks, predicting gene function, and interpretation of transcriptome profiling studies, based on methods such as clustering. The majority of such studies use data collected from bulk tissue, where the effects of cellular composition pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Farahbod, Marjan, Pavlidis, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370889/
https://www.ncbi.nlm.nih.gov/pubmed/32580998
http://dx.doi.org/10.1101/gr.256735.119
Descripción
Sumario:Coexpression analysis is widely used for inferring regulatory networks, predicting gene function, and interpretation of transcriptome profiling studies, based on methods such as clustering. The majority of such studies use data collected from bulk tissue, where the effects of cellular composition present a potential confound. However, the impact of composition on coexpression analysis has not been studied in detail. Here, we examine this issue for the case of human RNA analysis. Focusing on brain tissue, we found that, for most genes, differences in expression levels across cell types account for a large fraction of the variance of their measured RNA levels (median R(2) = 0.68). We then show that genes that have similar expression patterns across cell types will have correlated RNA levels in bulk tissue, due to the effect of variation in cellular composition. We demonstrate that much of the coexpression and the formation of coexpression clusters can be attributed to this effect for both brain and blood transcriptomes. For brain, we further show how this composition-induced coexpression masks underlying intra-cell-type coexpression observed in single-cell data. An attempt to correct for composition yielded mixed results. Our conclusion is that the dominant coexpression signal in brain, blood, and, likely, other complex tissues can be attributed to cellular compositional effects, rather than intra-cell-type regulatory relationships. These results have implications for the relevance and interpretation of coexpression analysis.