Cargando…
An Inertial Proximal-Gradient Penalization Scheme for Constrained Convex Optimization Problems
We propose a proximal-gradient algorithm with penalization terms and inertial and memory effects for minimizing the sum of a proper, convex, and lower semicontinuous and a convex differentiable function subject to the set of minimizers of another convex differentiable function. We show that, under s...
Autores principales: | Boţ, Radu Ioan, Csetnek, Ernö Robert, Nimana, Nimit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370989/ https://www.ncbi.nlm.nih.gov/pubmed/32714952 http://dx.doi.org/10.1007/s10013-017-0256-9 |
Ejemplares similares
-
Gradient-type penalty method with inertial effects for solving constrained convex optimization problems with smooth data
por: Boţ, Radu Ioan, et al.
Publicado: (2017) -
The Proximal Alternating Minimization Algorithm for Two-Block Separable Convex Optimization Problems with Linear Constraints
por: Bitterlich, Sandy, et al.
Publicado: (2018) -
Proximal-gradient algorithms for fractional programming
por: Boţ, Radu Ioan, et al.
Publicado: (2017) -
An accelerated minimax algorithm for convex-concave saddle point problems with nonsmooth coupling function
por: Boţ, Radu Ioan, et al.
Publicado: (2022) -
Variable Smoothing for Convex Optimization Problems Using Stochastic Gradients
por: Boţ, Radu Ioan, et al.
Publicado: (2020)