Cargando…

Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud

Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the land surface observations. We present a HIghly Scalable Temporal Adaptive Refle...

Descripción completa

Detalles Bibliográficos
Autores principales: Moreno-Martínez, Álvaro, Izquierdo-Verdiguier, Emma, Maneta, Marco P., Camps-Valls, Gustau, Robinson, Nathaniel, Muñoz-Marí, Jordi, Sedano, Fernando, Clinton, Nicholas, Running, Steven W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Elsevier Pub. Co 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371185/
https://www.ncbi.nlm.nih.gov/pubmed/32943798
http://dx.doi.org/10.1016/j.rse.2020.111901
_version_ 1783561097203154944
author Moreno-Martínez, Álvaro
Izquierdo-Verdiguier, Emma
Maneta, Marco P.
Camps-Valls, Gustau
Robinson, Nathaniel
Muñoz-Marí, Jordi
Sedano, Fernando
Clinton, Nicholas
Running, Steven W.
author_facet Moreno-Martínez, Álvaro
Izquierdo-Verdiguier, Emma
Maneta, Marco P.
Camps-Valls, Gustau
Robinson, Nathaniel
Muñoz-Marí, Jordi
Sedano, Fernando
Clinton, Nicholas
Running, Steven W.
author_sort Moreno-Martínez, Álvaro
collection PubMed
description Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the land surface observations. We present a HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to combine multispectral images of different sensors to reduce noise and produce monthly gap free high resolution (30 m) observations over land. Our approach uses images from the Landsat (30 m spatial resolution and 16 day revisit cycle) and the MODIS missions, both from Terra and Aqua platforms (500 m spatial resolution and daily revisit cycle). We implement a bias-aware Kalman filter method in the Google Earth Engine (GEE) platform to obtain fused images at the Landsat spatial-resolution. The added bias correction in the Kalman filter estimates accounts for the fact that both model and observation errors are temporally auto-correlated and may have a non-zero mean. This approach also enables reliable estimation of the uncertainty associated with the final reflectance estimates, allowing for error propagation analyses in higher level remote sensing products. Quantitative and qualitative evaluations of the generated products through comparison with other state-of-the-art methods confirm the validity of the approach, and open the door to operational applications at enhanced spatio-temporal resolutions at broad continental scales.
format Online
Article
Text
id pubmed-7371185
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Elsevier Pub. Co
record_format MEDLINE/PubMed
spelling pubmed-73711852020-09-15 Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud Moreno-Martínez, Álvaro Izquierdo-Verdiguier, Emma Maneta, Marco P. Camps-Valls, Gustau Robinson, Nathaniel Muñoz-Marí, Jordi Sedano, Fernando Clinton, Nicholas Running, Steven W. Remote Sens Environ Article Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the land surface observations. We present a HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to combine multispectral images of different sensors to reduce noise and produce monthly gap free high resolution (30 m) observations over land. Our approach uses images from the Landsat (30 m spatial resolution and 16 day revisit cycle) and the MODIS missions, both from Terra and Aqua platforms (500 m spatial resolution and daily revisit cycle). We implement a bias-aware Kalman filter method in the Google Earth Engine (GEE) platform to obtain fused images at the Landsat spatial-resolution. The added bias correction in the Kalman filter estimates accounts for the fact that both model and observation errors are temporally auto-correlated and may have a non-zero mean. This approach also enables reliable estimation of the uncertainty associated with the final reflectance estimates, allowing for error propagation analyses in higher level remote sensing products. Quantitative and qualitative evaluations of the generated products through comparison with other state-of-the-art methods confirm the validity of the approach, and open the door to operational applications at enhanced spatio-temporal resolutions at broad continental scales. American Elsevier Pub. Co 2020-09-15 /pmc/articles/PMC7371185/ /pubmed/32943798 http://dx.doi.org/10.1016/j.rse.2020.111901 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Moreno-Martínez, Álvaro
Izquierdo-Verdiguier, Emma
Maneta, Marco P.
Camps-Valls, Gustau
Robinson, Nathaniel
Muñoz-Marí, Jordi
Sedano, Fernando
Clinton, Nicholas
Running, Steven W.
Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud
title Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud
title_full Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud
title_fullStr Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud
title_full_unstemmed Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud
title_short Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud
title_sort multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371185/
https://www.ncbi.nlm.nih.gov/pubmed/32943798
http://dx.doi.org/10.1016/j.rse.2020.111901
work_keys_str_mv AT morenomartinezalvaro multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud
AT izquierdoverdiguieremma multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud
AT manetamarcop multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud
AT campsvallsgustau multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud
AT robinsonnathaniel multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud
AT munozmarijordi multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud
AT sedanofernando multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud
AT clintonnicholas multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud
AT runningstevenw multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud