Cargando…
Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud
Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the land surface observations. We present a HIghly Scalable Temporal Adaptive Refle...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Elsevier Pub. Co
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371185/ https://www.ncbi.nlm.nih.gov/pubmed/32943798 http://dx.doi.org/10.1016/j.rse.2020.111901 |
_version_ | 1783561097203154944 |
---|---|
author | Moreno-Martínez, Álvaro Izquierdo-Verdiguier, Emma Maneta, Marco P. Camps-Valls, Gustau Robinson, Nathaniel Muñoz-Marí, Jordi Sedano, Fernando Clinton, Nicholas Running, Steven W. |
author_facet | Moreno-Martínez, Álvaro Izquierdo-Verdiguier, Emma Maneta, Marco P. Camps-Valls, Gustau Robinson, Nathaniel Muñoz-Marí, Jordi Sedano, Fernando Clinton, Nicholas Running, Steven W. |
author_sort | Moreno-Martínez, Álvaro |
collection | PubMed |
description | Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the land surface observations. We present a HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to combine multispectral images of different sensors to reduce noise and produce monthly gap free high resolution (30 m) observations over land. Our approach uses images from the Landsat (30 m spatial resolution and 16 day revisit cycle) and the MODIS missions, both from Terra and Aqua platforms (500 m spatial resolution and daily revisit cycle). We implement a bias-aware Kalman filter method in the Google Earth Engine (GEE) platform to obtain fused images at the Landsat spatial-resolution. The added bias correction in the Kalman filter estimates accounts for the fact that both model and observation errors are temporally auto-correlated and may have a non-zero mean. This approach also enables reliable estimation of the uncertainty associated with the final reflectance estimates, allowing for error propagation analyses in higher level remote sensing products. Quantitative and qualitative evaluations of the generated products through comparison with other state-of-the-art methods confirm the validity of the approach, and open the door to operational applications at enhanced spatio-temporal resolutions at broad continental scales. |
format | Online Article Text |
id | pubmed-7371185 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Elsevier Pub. Co |
record_format | MEDLINE/PubMed |
spelling | pubmed-73711852020-09-15 Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud Moreno-Martínez, Álvaro Izquierdo-Verdiguier, Emma Maneta, Marco P. Camps-Valls, Gustau Robinson, Nathaniel Muñoz-Marí, Jordi Sedano, Fernando Clinton, Nicholas Running, Steven W. Remote Sens Environ Article Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the land surface observations. We present a HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to combine multispectral images of different sensors to reduce noise and produce monthly gap free high resolution (30 m) observations over land. Our approach uses images from the Landsat (30 m spatial resolution and 16 day revisit cycle) and the MODIS missions, both from Terra and Aqua platforms (500 m spatial resolution and daily revisit cycle). We implement a bias-aware Kalman filter method in the Google Earth Engine (GEE) platform to obtain fused images at the Landsat spatial-resolution. The added bias correction in the Kalman filter estimates accounts for the fact that both model and observation errors are temporally auto-correlated and may have a non-zero mean. This approach also enables reliable estimation of the uncertainty associated with the final reflectance estimates, allowing for error propagation analyses in higher level remote sensing products. Quantitative and qualitative evaluations of the generated products through comparison with other state-of-the-art methods confirm the validity of the approach, and open the door to operational applications at enhanced spatio-temporal resolutions at broad continental scales. American Elsevier Pub. Co 2020-09-15 /pmc/articles/PMC7371185/ /pubmed/32943798 http://dx.doi.org/10.1016/j.rse.2020.111901 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Moreno-Martínez, Álvaro Izquierdo-Verdiguier, Emma Maneta, Marco P. Camps-Valls, Gustau Robinson, Nathaniel Muñoz-Marí, Jordi Sedano, Fernando Clinton, Nicholas Running, Steven W. Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud |
title | Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud |
title_full | Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud |
title_fullStr | Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud |
title_full_unstemmed | Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud |
title_short | Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud |
title_sort | multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371185/ https://www.ncbi.nlm.nih.gov/pubmed/32943798 http://dx.doi.org/10.1016/j.rse.2020.111901 |
work_keys_str_mv | AT morenomartinezalvaro multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud AT izquierdoverdiguieremma multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud AT manetamarcop multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud AT campsvallsgustau multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud AT robinsonnathaniel multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud AT munozmarijordi multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud AT sedanofernando multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud AT clintonnicholas multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud AT runningstevenw multispectralhighresolutionsensorfusionforsmoothingandgapfillinginthecloud |