Cargando…
Moving beyond the Cox proportional hazards model in survival data analysis: a cervical cancer study
OBJECTIVES: This study explored the prognostic factors and developed a prediction model for Chinese-American (CA) cervical cancer (CC) patients. We compared two alternative models (the restricted mean survival time (RMST) model and the proportional baselines landmark supermodel (PBLS model, producin...
Autores principales: | Li, Lixian, Yang, Zijing, Hou, Yawen, Chen, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371360/ https://www.ncbi.nlm.nih.gov/pubmed/32690495 http://dx.doi.org/10.1136/bmjopen-2019-033965 |
Ejemplares similares
-
Tests for the proportional hazards assumption in the Cox model
por: Reiersølmoen, L, et al.
Publicado: (2001) -
Survival Prediction Based on Compound Covariate under Cox Proportional Hazard Models
por: Emura, Takeshi, et al.
Publicado: (2012) -
Generating survival times to simulate Cox proportional hazards models with time-varying covariates
por: Austin, Peter C
Publicado: (2012) -
The Optimal Machine Learning-Based Missing Data Imputation for the Cox Proportional Hazard Model
por: Guo, Chao-Yu, et al.
Publicado: (2021) -
Ten Years’ Survival in Patients with Cervical Cancer and Related Factors in West Azerbaijan Province: Using of Cox Proportion Hazard Model
por: Khalkhali, Hamid Reza, et al.
Publicado: (2019)