Cargando…
Deep learning methods improve linear B-cell epitope prediction
BACKGROUND: B-cell epitopes play important roles in vaccine design, clinical diagnosis, and antibody production. Although some models have been developed to predict linear or conformational B-cell epitopes, their performance is still unsatisfactory. Hundreds of thousands of linear B-cell epitope dat...
Autores principales: | Liu, Tao, Shi, Kaiwen, Li, Wuju |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371472/ https://www.ncbi.nlm.nih.gov/pubmed/32699555 http://dx.doi.org/10.1186/s13040-020-00211-0 |
Ejemplares similares
-
Improved method for predicting linear B-cell epitopes
por: Larsen, Jens Erik Pontoppidan, et al.
Publicado: (2006) -
Predicting linear B-cell epitopes using amino acid anchoring pair composition
por: Shen, Weike, et al.
Publicado: (2015) -
A meta-learning approach for B-cell conformational epitope prediction
por: Hu, Yuh-Jyh, et al.
Publicado: (2014) -
DeepLBCEPred: A Bi-LSTM and multi-scale CNN-based deep learning method for predicting linear B-cell epitopes
por: Qi, Yue, et al.
Publicado: (2023) -
DeepNetBim: deep learning model for predicting HLA-epitope interactions based on network analysis by harnessing binding and immunogenicity information
por: Yang, Xiaoyun, et al.
Publicado: (2021)