Cargando…
Modulation of MnSOD and FoxM1 Is Involved in Invasion and EMT Suppression by Isovitexin in Hepatocellular Carcinoma Cells
BACKGROUND: Manganese superoxide dismutase (MnSOD) induces FoxM1 expression, subsequently contributing to migration in several cancer cells. Isovitexin (ISOV) was recently found to downregulate MnSOD and FoxM1, decreasing stemness in hepatocellular carcinoma (HCC) stem-like cells (HCSLCs). The curre...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371559/ https://www.ncbi.nlm.nih.gov/pubmed/32765079 http://dx.doi.org/10.2147/CMAR.S245283 |
Sumario: | BACKGROUND: Manganese superoxide dismutase (MnSOD) induces FoxM1 expression, subsequently contributing to migration in several cancer cells. Isovitexin (ISOV) was recently found to downregulate MnSOD and FoxM1, decreasing stemness in hepatocellular carcinoma (HCC) stem-like cells (HCSLCs). The current study aimed to determine whether inhibition of migration, invasion and EMT in HCSLCs by ISOV results from MnSOD/FoxM1 signaling blockade and subsequent Twist1, Slug, ZEB1 and MMP-2 downregulation. MATERIALS AND METHODS: We examined the migratory and invasive capabilities and EMT phenotype in HCC cells and their HCSLCs, respectively, by wound-healing assay, transwell invasion assay and Western blot after treatment with non-cytotoxic concentrations of ISOV, and explored the mechanism by which ISOV affects migration, invasion and EMT by MnSOD or FoxM1 knockdown and/or overexpression in HCSLCs or HCC cells. RESULTS: The results showed that ISOV not only downregulated MnSOD and FoxM1 but also suppressed the migratory and invasive capabilities and reversed the EMT phenotype in HCSLCs, which was reflected by elevated E-cadherin protein amounts, and reduced N-cadherin, Twist1, Slug, ZEB1 and MMP-2 protein levels. The suppressive effects of ISOV on the migratory and invasive capabilities and EMT phenotype could be potentiated by MnSOD or FoxM1 knockdown in HCSLCs, and attenuated by MnSOD or FoxM1 overexpression in HCC cells. Importantly, FoxM1 overexpression reversed MnSOD knockdown combined with ISOV suppression on the migratory and invasive capabilities and EMT phenotype in HCSLCs, while having little effects on MnSOD expression. CONCLUSION: Collectively, the above findings demonstrated that ISOV suppresses migration, invasion and EMT in HCSLCs by blocking MnSOD/FoxM1 signaling subsequently inhibiting the expression of EMT-related transcription factors and MMP-2. |
---|