Cargando…

Tanshinone IIA Promotes Axonal Regeneration in Rats with Focal Cerebral Ischemia Through the Inhibition of Nogo-A/NgR1/RhoA/ROCKII/MLC Signaling

PURPOSE: The aim of this study was to evaluate the neuroprotective effect of tanshinone IIA (TSA) on focal cerebral ischemia in rats and to investigate whether it was associated with Nogo-A/NgR1/RhoA/Rho-associated protein kinase 2 (ROCKII)/myosin light chain (MLC) signaling. METHODS: In this study,...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jing, Ni, Guangxiao, Liu, Yanming, Han, Ying, Jia, Lin, Wang, Yali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371607/
https://www.ncbi.nlm.nih.gov/pubmed/32764877
http://dx.doi.org/10.2147/DDDT.S253280
Descripción
Sumario:PURPOSE: The aim of this study was to evaluate the neuroprotective effect of tanshinone IIA (TSA) on focal cerebral ischemia in rats and to investigate whether it was associated with Nogo-A/NgR1/RhoA/Rho-associated protein kinase 2 (ROCKII)/myosin light chain (MLC) signaling. METHODS: In this study, focal cerebral ischemia animal model was used. Neurological deficit scores and infarction volume were investigated to evaluate the neuroprotection of TSA. Hematoxylin-eosin staining, Nissl staining, and immunofluorescence staining were conducted to detect ischemic changes in brain tissue and changes in neurofilament protein 200 (NF200) and growth-associated protein-43 (GAP-43) expression, respectively. Western blotting and qRT-PCR analyses were used to detect the expression levels of NF200, GAP-43 and Nogo-A/NgR1/RhoA/ROCKII/MLC pathway-related signaling molecules. RESULTS: TSA treatment can improve the survival rate of rats, reduce the neurological score and infarct volume, and reduce neuron damage. In addition, TSA also increased axon length and enhanced expression of NF200 and GAP-43. Importantly, TSA significantly attenuated the expression of Nogo-A, NgR1, RhoA, ROCKII, and p-MLC, and thus inhibiting the activation of this signaling pathway. CONCLUSION: TSA promoted axonal regeneration by inhibiting the Nogo-A/NgR1/RhoA/ROCKII/MLC signaling pathway, thereby exerting neuroprotective effects in cerebral ischemia rats, which provided support for the clinical application of TSA in stroke treatment.