Cargando…

Prognostic Value of Coronary CT Angiography for Predicting Poor Cardiac Outcome in Stroke Patients without Known Cardiac Disease or Chest Pain: The Assessment of Coronary Artery Disease in Stroke Patients Study

OBJECTIVE: To assess the incremental prognostic value of coronary computed tomography angiography (CCTA) in comparison to a clinical risk model (Framingham risk score, FRS) and coronary artery calcium score (CACS) for future cardiac events in ischemic stroke patients without chest pain. MATERIALS AN...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoon, Sung Hyun, Kim, Eunhee, Jeon, Yongho, Yi, Sang Yoon, Bae, Hee-Joon, Jang, Ik-Kyung, Lee, Joo Myung, Yoo, Seung Min, White, Charles S., Chun, Eun Ju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Radiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371620/
https://www.ncbi.nlm.nih.gov/pubmed/32691541
http://dx.doi.org/10.3348/kjr.2020.0103
Descripción
Sumario:OBJECTIVE: To assess the incremental prognostic value of coronary computed tomography angiography (CCTA) in comparison to a clinical risk model (Framingham risk score, FRS) and coronary artery calcium score (CACS) for future cardiac events in ischemic stroke patients without chest pain. MATERIALS AND METHODS: This retrospective study included 1418 patients with acute stroke who had no previous cardiac disease and underwent CCTA, including CACS. Stenosis degree and plaque types (high-risk, non-calcified, mixed, or calcified plaques) were assessed as CCTA variables. High-risk plaque was defined when at least two of the following characteristics were observed: low-density plaque, positive remodeling, spotty calcification, or napkin-ring sign. We compared the incremental prognostic value of CCTA for major adverse cardiovascular events (MACE) over CACS and FRS. RESULTS: The prevalence of any plaque and obstructive coronary artery disease (CAD) (stenosis ≥ 50%) were 70.7% and 30.2%, respectively. During the median follow-up period of 48 months, 108 patients (7.6%) experienced MACE. Increasing FRS, CACS, and stenosis degree were positively associated with MACE (all p < 0.05). Patients with high-risk plaque type showed the highest incidence of MACE, followed by non-calcified, mixed, and calcified plaque, respectively (log-rank p < 0.001). Among the prediction models for MACE, adding stenosis degree to FRS showed better discrimination and risk reclassification compared to FRS or the FRS + CACS model (all p < 0.05). Furthermore, incorporating plaque type in the prediction model significantly improved reclassification (integrated discrimination improvement, 0.08; p = 0.023) and showed the highest discrimination index (C-statistics, 0.85). However, the addition of CACS on CCTA with FRS did not add to the prediction ability for MACE (p > 0.05). CONCLUSION: Assessment of stenosis degree and plaque type using CCTA provided additional prognostic value over CACS and FRS to risk stratify stroke patients without prior history of CAD better.